My Project
Loading...
Searching...
No Matches
Macros | Functions | Variables
kstd1.cc File Reference
#include "kernel/mod2.h"
#include "misc/options.h"
#include "misc/intvec.h"
#include "polys/weight.h"
#include "kernel/polys.h"
#include "kernel/GBEngine/kutil.h"
#include "kernel/GBEngine/kstd1.h"
#include "kernel/GBEngine/khstd.h"
#include "kernel/combinatorics/stairc.h"
#include "kernel/ideals.h"
#include "polys/nc/nc.h"
#include "polys/nc/sca.h"
#include "kernel/GBEngine/nc.h"
#include "kernel/GBEngine/kInline.h"
#include "polys/shiftop.h"

Go to the source code of this file.

Macros

#define MORA_USE_BUCKETS
 
#define PRE_INTEGER_CHECK   0
 

Functions

static BOOLEAN kMoraUseBucket (kStrategy strat)
 
static void kOptimizeLDeg (pLDegProc ldeg, kStrategy strat)
 
static int doRed (LObject *h, TObject *with, BOOLEAN intoT, kStrategy strat, bool redMoraNF)
 
int redEcart (LObject *h, kStrategy strat)
 
int redRiloc (LObject *h, kStrategy strat)
 
int redRiloc_Z (LObject *h, kStrategy strat)
 
int redFirst (LObject *h, kStrategy strat)
 
static poly redMoraNF (poly h, kStrategy strat, int flag)
 
static poly redMoraNFRing (poly h, kStrategy strat, int flag)
 
void reorderL (kStrategy strat)
 
void reorderT (kStrategy strat)
 
void missingAxis (int *last, kStrategy strat)
 
BOOLEAN hasPurePower (const poly p, int last, int *length, kStrategy strat)
 
BOOLEAN hasPurePower (LObject *L, int last, int *length, kStrategy strat)
 
int posInL10 (const LSet set, const int length, LObject *p, const kStrategy strat)
 
void updateL (kStrategy strat)
 
void updateLHC (kStrategy strat)
 
void updateT (kStrategy strat)
 
void firstUpdate (kStrategy strat)
 
void enterSMora (LObject &p, int atS, kStrategy strat, int atR=-1)
 
void enterSMoraNF (LObject &p, int atS, kStrategy strat, int atR=-1)
 
void initBba (kStrategy strat)
 
void initSba (ideal F, kStrategy strat)
 
void initMora (ideal F, kStrategy strat)
 
void kDebugPrint (kStrategy strat)
 
ideal mora (ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
 
poly kNF1 (ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
 
ideal kNF1 (ideal F, ideal Q, ideal q, kStrategy strat, int lazyReduce)
 
long kModDeg (poly p, const ring r)
 
long kHomModDeg (poly p, const ring r)
 
static poly kTryHC (ideal F, ideal Q)
 
ideal kStd (ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
 
ideal kSba (ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
 
ideal kStdShift (ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, BOOLEAN rightGB)
 
ideal kMin_std (ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
 
poly kNF (ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
 
poly kNFBound (ideal F, ideal Q, poly p, int bound, int syzComp, int lazyReduce)
 
ideal kNF (ideal F, ideal Q, ideal p, int syzComp, int lazyReduce)
 
ideal kNFBound (ideal F, ideal Q, ideal p, int bound, int syzComp, int lazyReduce)
 
poly k_NF (ideal F, ideal Q, poly p, int syzComp, int lazyReduce, const ring _currRing)
 NOTE: this is just a wrapper which sets currRing for the actual kNF call.
 
ideal kInterRedOld (ideal F, const ideal Q)
 
ideal kInterRedBba (ideal F, ideal Q, int &need_retry)
 
ideal kInterRed (ideal F, const ideal Q)
 

Variables

VAR BITSET kOptions
 
VAR BITSET validOpts
 
VAR intveckModW
 
VAR intveckHomW
 

Macro Definition Documentation

◆ MORA_USE_BUCKETS

#define MORA_USE_BUCKETS

Definition at line 12 of file kstd1.cc.

◆ PRE_INTEGER_CHECK

#define PRE_INTEGER_CHECK   0

Definition at line 14 of file kstd1.cc.

Function Documentation

◆ doRed()

static int doRed ( LObject h,
TObject with,
BOOLEAN  intoT,
kStrategy  strat,
bool  redMoraNF 
)
static

Definition at line 119 of file kstd1.cc.

120{
121 int ret;
122#if KDEBUG > 0
123 kTest_L(h);
124 kTest_T(with);
125#endif
126 // Hmmm ... why do we do this -- polys from T should already be normalized
128 with->pNorm();
129#ifdef KDEBUG
130 if (TEST_OPT_DEBUG)
131 {
132 PrintS("reduce ");h->wrp();PrintS(" with ");with->wrp();PrintLn();
133 }
134#endif
135 if (intoT)
136 {
137 // need to do it exactly like this: otherwise
138 // we might get errors
139 LObject L= *h;
140 L.Copy();
141 h->GetP();
142 h->length=h->pLength=pLength(h->p);
143 ret = ksReducePoly(&L, with, strat->kNoetherTail(), NULL, NULL, strat);
144 if (ret)
145 {
146 if (ret < 0) return ret;
147 if (h->tailRing != strat->tailRing)
148 h->ShallowCopyDelete(strat->tailRing,
150 strat->tailRing));
151 }
153 enterT_strong(*h,strat);
154 else
155 enterT(*h,strat);
156 *h = L;
157 }
158 else
159 ret = ksReducePoly(h, with, strat->kNoetherTail(), NULL, NULL, strat);
160#ifdef KDEBUG
161 if (TEST_OPT_DEBUG)
162 {
163 PrintS("to ");h->wrp();PrintLn();
164 }
165#endif
166 return ret;
167}
KINLINE poly kNoetherTail()
Definition kInline.h:66
ring tailRing
Definition kutil.h:343
STATIC_VAR Poly * h
Definition janet.cc:971
int ksReducePoly(LObject *PR, TObject *PW, poly spNoether, number *coef, poly *mon, kStrategy strat, BOOLEAN reduce)
Definition kspoly.cc:187
static poly redMoraNF(poly h, kStrategy strat, int flag)
Definition kstd1.cc:976
void enterT(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9140
void enterT_strong(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9239
BOOLEAN kTest_L(LObject *L, kStrategy strat, BOOLEAN testp, int lpos, TSet T, int tlength)
Definition kutil.cc:924
BOOLEAN kTest_T(TObject *T, kStrategy strat, int i, char TN)
Definition kutil.cc:799
class sLObject LObject
Definition kutil.h:58
#define NULL
Definition omList.c:12
#define TEST_OPT_INTSTRATEGY
Definition options.h:110
#define TEST_OPT_DEBUG
Definition options.h:108
pShallowCopyDeleteProc pGetShallowCopyDeleteProc(ring, ring)
static int pLength(poly a)
Definition p_polys.h:190
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition polys.cc:13
void PrintS(const char *s)
Definition reporter.cc:284
void PrintLn()
Definition reporter.cc:310
#define rField_is_Ring(R)
Definition ring.h:490

◆ enterSMora()

void enterSMora ( LObject p,
int  atS,
kStrategy  strat,
int  atR = -1 
)

Definition at line 1624 of file kstd1.cc.

1625{
1626 enterSBba(p, atS, strat, atR);
1627 #ifdef KDEBUG
1628 if (TEST_OPT_DEBUG)
1629 {
1630 Print("new s%d:",atS);
1631 p_wrp(p.p,currRing,strat->tailRing);
1632 PrintLn();
1633 }
1634 #endif
1635 HEckeTest(p.p,strat);
1636 if (strat->kAllAxis)
1637 {
1638 if (newHEdge(strat))
1639 {
1640 firstUpdate(strat);
1641 if (TEST_OPT_FINDET)
1642 return;
1643
1644 /*- cuts elements in L above noether and reorders L -*/
1645 updateLHC(strat);
1646 /*- reorders L with respect to posInL -*/
1647 reorderL(strat);
1648 }
1649 }
1650 else if ((strat->kNoether==NULL)
1651 && (TEST_OPT_FASTHC))
1652 {
1653 if (strat->posInLOldFlag)
1654 {
1655 missingAxis(&strat->lastAxis,strat);
1656 if (strat->lastAxis)
1657 {
1658 strat->posInLOld = strat->posInL;
1659 strat->posInLOldFlag = FALSE;
1660 strat->posInL = posInL10;
1661 strat->posInLDependsOnLength = TRUE;
1662 updateL(strat);
1663 reorderL(strat);
1664 }
1665 }
1666 else if (strat->lastAxis)
1667 updateL(strat);
1668 }
1669}
#define TRUE
Definition auxiliary.h:100
#define FALSE
Definition auxiliary.h:96
int p
Definition cfModGcd.cc:4086
char posInLOldFlag
Definition kutil.h:380
poly kNoether
Definition kutil.h:329
int lastAxis
Definition kutil.h:355
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition kutil.h:284
int(* posInLOld)(const LSet Ls, const int Ll, LObject *Lo, const kStrategy strat)
Definition kutil.h:288
char kAllAxis
Definition kutil.h:374
char posInLDependsOnLength
Definition kutil.h:387
#define Print
Definition emacs.cc:80
void firstUpdate(kStrategy strat)
Definition kstd1.cc:1557
void updateLHC(kStrategy strat)
Definition kstd1.cc:1465
void missingAxis(int *last, kStrategy strat)
Definition kstd1.cc:1280
void reorderL(kStrategy strat)
Definition kstd1.cc:1222
int posInL10(const LSet set, const int length, LObject *p, const kStrategy strat)
Definition kstd1.cc:1361
void updateL(kStrategy strat)
Definition kstd1.cc:1394
void HEckeTest(poly pp, kStrategy strat)
Definition kutil.cc:498
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8791
BOOLEAN newHEdge(kStrategy strat)
Definition kutil.cc:10404
#define TEST_OPT_FINDET
Definition options.h:111
#define TEST_OPT_FASTHC
Definition options.h:109
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373

◆ enterSMoraNF()

void enterSMoraNF ( LObject p,
int  atS,
kStrategy  strat,
int  atR = -1 
)

Definition at line 1677 of file kstd1.cc.

1678{
1679 enterSBba(p, atS, strat, atR);
1680 if ((!strat->kAllAxis) || (strat->kNoether!=NULL)) HEckeTest(p.p,strat);
1681 if (strat->kAllAxis)
1682 newHEdge(strat);
1683}

◆ firstUpdate()

void firstUpdate ( kStrategy  strat)

Definition at line 1557 of file kstd1.cc.

1558{
1559 if (strat->update)
1560 {
1561 kTest_TS(strat);
1562 strat->update = (strat->tl == -1);
1563 if (TEST_OPT_WEIGHTM)
1564 {
1566 if (strat->tailRing != currRing)
1567 {
1568 strat->tailRing->pFDeg = strat->pOrigFDeg_TailRing;
1569 strat->tailRing->pLDeg = strat->pOrigLDeg_TailRing;
1570 }
1571 int i;
1572 for (i=strat->Ll; i>=0; i--)
1573 {
1574 strat->L[i].SetpFDeg();
1575 }
1576 for (i=strat->tl; i>=0; i--)
1577 {
1578 strat->T[i].SetpFDeg();
1579 }
1580 if (ecartWeights)
1581 {
1582 omFreeSize((ADDRESS)ecartWeights,(rVar(currRing)+1)*sizeof(short));
1584 }
1585 }
1586 if (TEST_OPT_FASTHC)
1587 {
1588 strat->posInL = strat->posInLOld;
1589 strat->lastAxis = 0;
1590 }
1591 if (TEST_OPT_FINDET)
1592 return;
1593
1595 {
1596 strat->red = redFirst;
1597 strat->use_buckets = kMoraUseBucket(strat);
1598 }
1599 updateT(strat);
1600
1602 {
1603 strat->posInT = posInT2;
1604 reorderT(strat);
1605 }
1606 }
1607 kTest_TS(strat);
1608}
int i
Definition cfEzgcd.cc:132
pFDegProc pOrigFDeg_TailRing
Definition kutil.h:298
int Ll
Definition kutil.h:351
TSet T
Definition kutil.h:326
int tl
Definition kutil.h:350
pFDegProc pOrigFDeg
Definition kutil.h:296
char use_buckets
Definition kutil.h:381
LSet L
Definition kutil.h:327
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition kutil.h:281
int(* red)(LObject *L, kStrategy strat)
Definition kutil.h:278
pLDegProc pOrigLDeg
Definition kutil.h:297
char update
Definition kutil.h:379
pLDegProc pOrigLDeg_TailRing
Definition kutil.h:299
void reorderT(kStrategy strat)
Definition kstd1.cc:1242
int redFirst(LObject *h, kStrategy strat)
Definition kstd1.cc:795
static BOOLEAN kMoraUseBucket(kStrategy strat)
Definition kstd1.cc:3882
void updateT(kStrategy strat)
Definition kstd1.cc:1531
BOOLEAN kTest_TS(kStrategy strat)
Definition kutil.cc:1071
int posInT2(const TSet set, const int length, LObject &p)
Definition kutil.cc:4930
#define omFreeSize(addr, size)
#define TEST_OPT_WEIGHTM
Definition options.h:121
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition p_polys.cc:3670
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597
BOOLEAN rHasGlobalOrdering(const ring r)
Definition ring.h:766
EXTERN_VAR short * ecartWeights
Definition weight.h:12

◆ hasPurePower() [1/2]

BOOLEAN hasPurePower ( const poly  p,
int  last,
int length,
kStrategy  strat 
)

Definition at line 1313 of file kstd1.cc.

1314{
1315 poly h;
1316 int i;
1317
1318 if (pNext(p) == strat->tail)
1319 return FALSE;
1320 pp_Test(p, currRing, strat->tailRing);
1321 if (strat->ak <= 0 || p_MinComp(p, currRing, strat->tailRing) == strat->ak)
1322 {
1324 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(p), currRing->cf))) i=0;
1325 if (i == last)
1326 {
1327 *length = 0;
1328 return TRUE;
1329 }
1330 *length = 1;
1331 h = pNext(p);
1332 while (h != NULL)
1333 {
1334 i = p_IsPurePower(h, strat->tailRing);
1335 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(h), currRing->cf))) i=0;
1336 if (i==last) return TRUE;
1337 (*length)++;
1338 pIter(h);
1339 }
1340 }
1341 return FALSE;
1342}
int ak
Definition kutil.h:353
poly tail
Definition kutil.h:334
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
STATIC_VAR poly last
Definition hdegree.cc:1144
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
#define pIter(p)
Definition monomials.h:37
#define pNext(p)
Definition monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1227
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:313
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163

◆ hasPurePower() [2/2]

BOOLEAN hasPurePower ( LObject L,
int  last,
int length,
kStrategy  strat 
)

Definition at line 1344 of file kstd1.cc.

1345{
1346 if (L->bucket != NULL)
1347 {
1348 poly p = L->GetP();
1349 return hasPurePower(p, last, length, strat);
1350 }
1351 else
1352 {
1353 return hasPurePower(L->p, last, length, strat);
1354 }
1355}
BOOLEAN hasPurePower(const poly p, int last, int *length, kStrategy strat)
Definition kstd1.cc:1313

◆ initBba()

void initBba ( kStrategy  strat)

Definition at line 1685 of file kstd1.cc.

1686{
1687 /* setting global variables ------------------- */
1688 strat->enterS = enterSBba;
1689 strat->red = redHoney;
1690 if (strat->honey)
1691 strat->red = redHoney;
1692 else if (currRing->pLexOrder && !strat->homog)
1693 strat->red = redLazy;
1694 else
1695 {
1696 strat->LazyPass *=4;
1697 strat->red = redHomog;
1698 }
1700 {
1701 if (rField_is_Z(currRing))
1702 strat->red = redRing_Z;
1703 else
1704 strat->red = redRing;
1705 }
1706 if (TEST_OPT_IDLIFT
1707 && (!rIsNCRing(currRing))
1708 && (!rField_is_Ring(currRing)))
1709 strat->red=redLiftstd;
1710 if (currRing->pLexOrder && strat->honey)
1711 strat->initEcart = initEcartNormal;
1712 else
1713 strat->initEcart = initEcartBBA;
1714 if (strat->honey)
1716 else
1718// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1719// {
1720// //interred machen Aenderung
1721// strat->pOrigFDeg=pFDeg;
1722// strat->pOrigLDeg=pLDeg;
1723// //h=ggetid("ecart");
1724// //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1725// //{
1726// // ecartWeights=iv2array(IDINTVEC(h));
1727// //}
1728// //else
1729// {
1730// ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1731// /*uses automatic computation of the ecartWeights to set them*/
1732// kEcartWeights(F->m,IDELEMS(F)-1,ecartWeights);
1733// }
1734// pRestoreDegProcs(currRing,totaldegreeWecart, maxdegreeWecart);
1735// if (TEST_OPT_PROT)
1736// {
1737// for(i=1; i<=(currRing->N); i++)
1738// Print(" %d",ecartWeights[i]);
1739// PrintLn();
1740// mflush();
1741// }
1742// }
1743}
char honey
Definition kutil.h:375
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition kutil.h:287
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition kutil.h:286
void(* initEcart)(TObject *L)
Definition kutil.h:280
int LazyPass
Definition kutil.h:353
char homog
Definition kutil.h:370
int redLiftstd(LObject *h, kStrategy strat)
Definition kLiftstd.cc:167
int redRing_Z(LObject *h, kStrategy strat)
Definition kstd2.cc:677
int redHoney(LObject *h, kStrategy strat)
Definition kstd2.cc:2067
int redHomog(LObject *h, kStrategy strat)
Definition kstd2.cc:1107
int redLazy(LObject *h, kStrategy strat)
Definition kstd2.cc:1862
int redRing(LObject *h, kStrategy strat)
Definition kstd2.cc:945
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition kutil.cc:1320
void initEcartNormal(TObject *h)
Definition kutil.cc:1298
void initEcartBBA(TObject *h)
Definition kutil.cc:1306
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition kutil.cc:1313
#define TEST_OPT_IDLIFT
Definition options.h:129
static BOOLEAN rField_is_Z(const ring r)
Definition ring.h:514
static BOOLEAN rIsNCRing(const ring r)
Definition ring.h:426

◆ initMora()

void initMora ( ideal  F,
kStrategy  strat 
)

Definition at line 1815 of file kstd1.cc.

1816{
1817 int i,j;
1818
1819 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
1820 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
1821 strat->enterS = enterSMora;
1822 strat->initEcartPair = initEcartPairMora; /*- ecart approximation -*/
1823 strat->posInLOld = strat->posInL;
1824 strat->posInLOldFlag = TRUE;
1825 strat->initEcart = initEcartNormal;
1826 strat->kAllAxis = (currRing->ppNoether) != NULL;
1827 if ( strat->kAllAxis )
1828 {
1829 strat->kNoether = pCopy((currRing->ppNoether));
1830 strat->red = redFirst; /*take the first possible in T*/
1831 if (TEST_OPT_PROT)
1832 {
1833 Print("H(%ld)",p_FDeg(strat->kNoether,currRing)+1);
1834 mflush();
1835 }
1836 }
1837 else if (strat->homog)
1838 strat->red = redFirst; /*take the first possible in T*/
1839 else
1840 strat->red = redEcart;/*take the first possible in under ecart-restriction*/
1841 if (strat->kAllAxis)
1842 {
1843 HCord = currRing->pFDeg((strat->kNoether),currRing)+1;
1844 }
1845 else
1846 {
1847 HCord = 32000;/*- very large -*/
1848 }
1849
1851 {
1852 if (rField_is_Z(currRing))
1853 strat->red = redRiloc_Z;
1854 else
1855 strat->red = redRiloc;
1856 }
1857
1858 /*reads the ecartWeights used for Graebes method from the
1859 *intvec ecart and set ecartWeights
1860 */
1861 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1862 {
1863 //interred machen Aenderung
1864 strat->pOrigFDeg=currRing->pFDeg;
1865 strat->pOrigLDeg=currRing->pLDeg;
1866 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1867 /*uses automatic computation of the ecartWeights to set them*/
1869
1871 if (TEST_OPT_PROT)
1872 {
1873 for(i=1; i<=(currRing->N); i++)
1874 Print(" %d",ecartWeights[i]);
1875 PrintLn();
1876 mflush();
1877 }
1878 }
1879 kOptimizeLDeg(currRing->pLDeg, strat);
1880}
int BOOLEAN
Definition auxiliary.h:87
BOOLEAN * NotUsedAxis
Definition kutil.h:332
int j
Definition facHensel.cc:110
int redEcart(LObject *h, kStrategy strat)
Definition kstd1.cc:169
static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
Definition kstd1.cc:100
int redRiloc(LObject *h, kStrategy strat)
Definition kstd1.cc:386
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1624
int redRiloc_Z(LObject *h, kStrategy strat)
Definition kstd1.cc:567
VAR int HCord
Definition kutil.cc:244
#define omAlloc(size)
#define TEST_OPT_PROT
Definition options.h:103
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition p_polys.cc:3658
static long p_FDeg(const poly p, const ring r)
Definition p_polys.h:380
#define pCopy(p)
return a copy of the poly
Definition polys.h:185
#define mflush()
Definition reporter.h:58
#define IDELEMS(i)
long totaldegreeWecart(poly p, ring r)
Definition weight.cc:217
long maxdegreeWecart(poly p, int *l, ring r)
Definition weight.cc:247
void kEcartWeights(poly *s, int sl, short *eweight, const ring R)
Definition weight.cc:182

◆ initSba()

void initSba ( ideal  F,
kStrategy  strat 
)

Definition at line 1745 of file kstd1.cc.

1746{
1747 int i;
1748 //idhdl h;
1749 /* setting global variables ------------------- */
1750 strat->enterS = enterSSba;
1751 strat->red2 = redHoney;
1752 if (strat->honey)
1753 strat->red2 = redHoney;
1754 else if (currRing->pLexOrder && !strat->homog)
1755 strat->red2 = redLazy;
1756 else
1757 {
1758 strat->LazyPass *=4;
1759 strat->red2 = redHomog;
1760 }
1762 {
1764 {strat->red2 = redRiloc;}
1765 else
1766 {strat->red2 = redRing;}
1767 }
1768 if (currRing->pLexOrder && strat->honey)
1769 strat->initEcart = initEcartNormal;
1770 else
1771 strat->initEcart = initEcartBBA;
1772 if (strat->honey)
1774 else
1776 //strat->kIdeal = NULL;
1777 //if (strat->ak==0) strat->kIdeal->rtyp=IDEAL_CMD;
1778 //else strat->kIdeal->rtyp=MODUL_CMD;
1779 //strat->kIdeal->data=(void *)strat->Shdl;
1780 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1781 {
1782 //interred machen Aenderung
1783 strat->pOrigFDeg = currRing->pFDeg;
1784 strat->pOrigLDeg = currRing->pLDeg;
1785 //h=ggetid("ecart");
1786 //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1787 //{
1788 // ecartWeights=iv2array(IDINTVEC(h));
1789 //}
1790 //else
1791 {
1792 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1793 /*uses automatic computation of the ecartWeights to set them*/
1795 }
1797 if (TEST_OPT_PROT)
1798 {
1799 for(i=1; i<=(currRing->N); i++)
1800 Print(" %d",ecartWeights[i]);
1801 PrintLn();
1802 mflush();
1803 }
1804 }
1805 // for sig-safe reductions in signature-based
1806 // standard basis computations
1808 strat->red = redSigRing;
1809 else
1810 strat->red = redSig;
1811 //strat->sbaOrder = 1;
1812 strat->currIdx = 1;
1813}
int currIdx
Definition kutil.h:317
int(* red2)(LObject *L, kStrategy strat)
Definition kutil.h:279
int redSigRing(LObject *h, kStrategy strat)
Definition kstd2.cc:1493
int redSig(LObject *h, kStrategy strat)
Definition kstd2.cc:1326
void enterSSba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8914
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition ring.h:767

◆ k_NF()

poly k_NF ( ideal  F,
ideal  Q,
poly  p,
int  syzComp,
int  lazyReduce,
const ring  _currRing 
)

NOTE: this is just a wrapper which sets currRing for the actual kNF call.

Definition at line 3439 of file kstd1.cc.

3440{
3441 const ring save = currRing;
3443 poly ret = kNF(F, Q, p, syzComp, lazyReduce);
3445 return ret;
3446}
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition kstd1.cc:3225
void rChangeCurrRing(ring r)
Definition polys.cc:15
#define Q
Definition sirandom.c:26

◆ kDebugPrint()

void kDebugPrint ( kStrategy  strat)

Definition at line 11496 of file kutil.cc.

11497{
11498 printf("red: ");
11499 if (strat->red==redFirst) printf("redFirst\n");
11500 else if (strat->red==redHoney) printf("redHoney\n");
11501 else if (strat->red==redEcart) printf("redEcart\n");
11502 else if (strat->red==redHomog) printf("redHomog\n");
11503 else if (strat->red==redLazy) printf("redLazy\n");
11504 else if (strat->red==redLiftstd) printf("redLiftstd\n");
11505 else printf("%p\n",(void*)strat->red);
11506 printf("posInT: ");
11507 if (strat->posInT==posInT0) printf("posInT0\n");
11508 else if (strat->posInT==posInT1) printf("posInT1\n");
11509 else if (strat->posInT==posInT11) printf("posInT11\n");
11510 else if (strat->posInT==posInT110) printf("posInT110\n");
11511 else if (strat->posInT==posInT13) printf("posInT13\n");
11512 else if (strat->posInT==posInT15) printf("posInT15\n");
11513 else if (strat->posInT==posInT17) printf("posInT17\n");
11514 else if (strat->posInT==posInT17_c) printf("posInT17_c\n");
11515 else if (strat->posInT==posInT19) printf("posInT19\n");
11516 else if (strat->posInT==posInT2) printf("posInT2\n");
11517 else if (strat->posInT==posInT11Ring) printf("posInT11Ring\n");
11518 else if (strat->posInT==posInT110Ring) printf("posInT110Ring\n");
11519 else if (strat->posInT==posInT15Ring) printf("posInT15Ring\n");
11520 else if (strat->posInT==posInT17Ring) printf("posInT17Ring\n");
11521 else if (strat->posInT==posInT17_cRing) printf("posInT17_cRing\n");
11522#ifdef HAVE_MORE_POS_IN_T
11523 else if (strat->posInT==posInT_EcartFDegpLength) printf("posInT_EcartFDegpLength\n");
11524 else if (strat->posInT==posInT_FDegpLength) printf("posInT_FDegpLength\n");
11525 else if (strat->posInT==posInT_pLength) printf("posInT_pLength\n");
11526#endif
11527 else if (strat->posInT==posInT_EcartpLength) printf("posInT_EcartpLength\n");
11528 else printf("%p\n",(void*)strat->posInT);
11529 printf("posInL: ");
11530 if (strat->posInL==posInL0) printf("posInL0\n");
11531 else if (strat->posInL==posInL10) printf("posInL10\n");
11532 else if (strat->posInL==posInL11) printf("posInL11\n");
11533 else if (strat->posInL==posInL110) printf("posInL110\n");
11534 else if (strat->posInL==posInL13) printf("posInL13\n");
11535 else if (strat->posInL==posInL15) printf("posInL15\n");
11536 else if (strat->posInL==posInL17) printf("posInL17\n");
11537 else if (strat->posInL==posInL17_c) printf("posInL17_c\n");
11538 else if (strat->posInL==posInL0) printf("posInL0Ring\n");
11539 else if (strat->posInL==posInL11Ring) printf("posInL11Ring\n");
11540 else if (strat->posInL==posInL11Ringls) printf("posInL11Ringls\n");
11541 else if (strat->posInL==posInL110Ring) printf("posInL110Ring\n");
11542 else if (strat->posInL==posInL15Ring) printf("posInL15Ring\n");
11543 else if (strat->posInL==posInL17Ring) printf("posInL17Ring\n");
11544 else if (strat->posInL==posInL17_cRing) printf("posInL17_cRing\n");
11545 else if (strat->posInL==posInLSpecial) printf("posInLSpecial\n");
11546 else printf("%p\n",(void*)strat->posInL);
11547 printf("enterS: ");
11548 if (strat->enterS==enterSBba) printf("enterSBba\n");
11549 else if (strat->enterS==enterSMora) printf("enterSMora\n");
11550 else if (strat->enterS==enterSMoraNF) printf("enterSMoraNF\n");
11551 else printf("%p\n",(void*)strat->enterS);
11552 printf("initEcart: ");
11553 if (strat->initEcart==initEcartBBA) printf("initEcartBBA\n");
11554 else if (strat->initEcart==initEcartNormal) printf("initEcartNormal\n");
11555 else printf("%p\n",(void*)strat->initEcart);
11556 printf("initEcartPair: ");
11557 if (strat->initEcartPair==initEcartPairBba) printf("initEcartPairBba\n");
11558 else if (strat->initEcartPair==initEcartPairMora) printf("initEcartPairMora\n");
11559 else printf("%p\n",(void*)strat->initEcartPair);
11560 printf("homog=%d, LazyDegree=%d, LazyPass=%d, ak=%d,\n",
11561 strat->homog, strat->LazyDegree,strat->LazyPass, strat->ak);
11562 printf("honey=%d, sugarCrit=%d, Gebauer=%d, noTailReduction=%d, use_buckets=%d\n",
11563 strat->honey,strat->sugarCrit,strat->Gebauer,strat->noTailReduction,strat->use_buckets);
11564 printf("chainCrit: ");
11565 if (strat->chainCrit==chainCritNormal) printf("chainCritNormal\n");
11566 else if (strat->chainCrit==chainCritOpt_1) printf("chainCritOpt_1\n");
11567 else printf("%p\n",(void*)strat->chainCrit);
11568 printf("posInLDependsOnLength=%d\n",
11569 strat->posInLDependsOnLength);
11570 printf("%s\n",showOption());
11571 printf("LDeg: ");
11572 if (currRing->pLDeg==pLDeg0) printf("pLDeg0");
11573 else if (currRing->pLDeg==pLDeg0c) printf("pLDeg0c");
11574 else if (currRing->pLDeg==pLDegb) printf("pLDegb");
11575 else if (currRing->pLDeg==pLDeg1) printf("pLDeg1");
11576 else if (currRing->pLDeg==pLDeg1c) printf("pLDeg1c");
11577 else if (currRing->pLDeg==pLDeg1_Deg) printf("pLDeg1_Deg");
11578 else if (currRing->pLDeg==pLDeg1c_Deg) printf("pLDeg1c_Deg");
11579 else if (currRing->pLDeg==pLDeg1_Totaldegree) printf("pLDeg1_Totaldegree");
11580 else if (currRing->pLDeg==pLDeg1c_Totaldegree) printf("pLDeg1c_Totaldegree");
11581 else if (currRing->pLDeg==pLDeg1_WFirstTotalDegree) printf("pLDeg1_WFirstTotalDegree");
11582 else if (currRing->pLDeg==pLDeg1c_WFirstTotalDegree) printf("pLDeg1c_WFirstTotalDegree");
11583 else if (currRing->pLDeg==maxdegreeWecart) printf("maxdegreeWecart");
11584 else printf("? (%lx)", (long)currRing->pLDeg);
11585 printf(" / ");
11586 if (strat->tailRing->pLDeg==pLDeg0) printf("pLDeg0");
11587 else if (strat->tailRing->pLDeg==pLDeg0c) printf("pLDeg0c");
11588 else if (strat->tailRing->pLDeg==pLDegb) printf("pLDegb");
11589 else if (strat->tailRing->pLDeg==pLDeg1) printf("pLDeg1");
11590 else if (strat->tailRing->pLDeg==pLDeg1c) printf("pLDeg1c");
11591 else if (strat->tailRing->pLDeg==pLDeg1_Deg) printf("pLDeg1_Deg");
11592 else if (strat->tailRing->pLDeg==pLDeg1c_Deg) printf("pLDeg1c_Deg");
11593 else if (strat->tailRing->pLDeg==pLDeg1_Totaldegree) printf("pLDeg1_Totaldegree");
11594 else if (strat->tailRing->pLDeg==pLDeg1c_Totaldegree) printf("pLDeg1c_Totaldegree");
11595 else if (strat->tailRing->pLDeg==pLDeg1_WFirstTotalDegree) printf("pLDeg1_WFirstTotalDegree");
11596 else if (strat->tailRing->pLDeg==pLDeg1c_WFirstTotalDegree) printf("pLDeg1c_WFirstTotalDegree");
11597 else if (strat->tailRing->pLDeg==maxdegreeWecart) printf("maxdegreeWecart");
11598 else printf("? (%lx)", (long)strat->tailRing->pLDeg);
11599 printf("\n");
11600 printf("currRing->pFDeg: ");
11601 if (currRing->pFDeg==p_Totaldegree) printf("p_Totaldegree");
11602 else if (currRing->pFDeg==p_WFirstTotalDegree) printf("pWFirstTotalDegree");
11603 else if (currRing->pFDeg==p_Deg) printf("p_Deg");
11604 else if (currRing->pFDeg==kHomModDeg) printf("kHomModDeg");
11605 else if (currRing->pFDeg==totaldegreeWecart) printf("totaldegreeWecart");
11606 else if (currRing->pFDeg==p_WTotaldegree) printf("p_WTotaldegree");
11607 else printf("? (%lx)", (long)currRing->pFDeg);
11608 printf("\n");
11609 printf(" syzring:%d, syzComp(strat):%d limit:%d\n",rIsSyzIndexRing(currRing),strat->syzComp,rGetCurrSyzLimit(currRing));
11611 printf(" degBound: %d\n", Kstd1_deg);
11612
11613 if( ecartWeights != NULL )
11614 {
11615 printf("ecartWeights: ");
11616 for (int i = rVar(currRing); i > 0; i--)
11617 printf("%hd ", ecartWeights[i]);
11618 printf("\n");
11620 }
11621
11622#ifndef SING_NDEBUG
11624#endif
11625}
int syzComp
Definition kutil.h:354
void(* chainCrit)(poly p, int ecart, kStrategy strat)
Definition kutil.h:291
char noTailReduction
Definition kutil.h:376
char sugarCrit
Definition kutil.h:375
char Gebauer
Definition kutil.h:376
int LazyDegree
Definition kutil.h:353
long kHomModDeg(poly p, const ring r)
Definition kstd1.cc:2424
int posInL17Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6301
int posInL17_cRing(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6414
int posInL110(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6060
int posInT17(const TSet set, const int length, LObject &p)
Definition kutil.cc:5283
int redFirst(LObject *h, kStrategy strat)
Definition kstd1.cc:795
int posInL11Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5846
int redEcart(LObject *h, kStrategy strat)
Definition kstd1.cc:169
int posInT11(const TSet set, const int length, LObject &p)
Definition kutil.cc:4958
int posInT1(const TSet set, const int length, LObject &p)
Definition kutil.cc:4901
int posInT110Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5076
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1677
int posInT_EcartpLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:5151
int posInT0(const TSet, const int length, LObject &)
Definition kutil.cc:4890
int posInL13(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6147
int posInL110Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6101
int posInT_pLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:11462
int posInT13(const TSet set, const int length, LObject &p)
Definition kutil.cc:5122
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5616
void chainCritOpt_1(poly, int, kStrategy strat)
Definition kutil.cc:3450
int posInT11Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:4994
int posInL15(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6182
int posInT17_c(const TSet set, const int length, LObject &p)
Definition kutil.cc:5389
int posInT_EcartFDegpLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:11371
int posInT15(const TSet set, const int length, LObject &p)
Definition kutil.cc:5189
int posInLSpecial(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5572
VAR int Kstd1_deg
Definition kutil.cc:245
int posInL11Ringls(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5914
int posInL17(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6257
int posInT110(const TSet set, const int length, LObject &p)
Definition kutil.cc:5034
int posInL15Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6217
int posInT19(const TSet set, const int length, LObject &p)
Definition kutil.cc:5515
int posInT15Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5243
int posInT17Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5344
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1624
int posInT17_cRing(const TSet set, const int length, LObject &p)
Definition kutil.cc:5450
int posInL17_c(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6350
int posInT_FDegpLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:11425
void chainCritNormal(poly p, int ecart, kStrategy strat)
Definition kutil.cc:3209
int posInL11(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5804
char * showOption()
Definition misc_ip.cc:709
#define assume(x)
Definition mod2.h:387
#define TEST_OPT_DEGBOUND
Definition options.h:113
long pLDegb(poly p, int *l, const ring r)
Definition p_polys.cc:812
long pLDeg1_Totaldegree(poly p, int *l, const ring r)
Definition p_polys.cc:976
long p_WFirstTotalDegree(poly p, const ring r)
Definition p_polys.cc:595
long pLDeg1_WFirstTotalDegree(poly p, int *l, const ring r)
Definition p_polys.cc:1039
long pLDeg1c_WFirstTotalDegree(poly p, int *l, const ring r)
Definition p_polys.cc:1069
long pLDeg1c_Deg(poly p, int *l, const ring r)
Definition p_polys.cc:942
long pLDeg1(poly p, int *l, const ring r)
Definition p_polys.cc:842
long pLDeg1_Deg(poly p, int *l, const ring r)
Definition p_polys.cc:911
long p_WTotaldegree(poly p, const ring r)
Definition p_polys.cc:612
long pLDeg1c(poly p, int *l, const ring r)
Definition p_polys.cc:878
long pLDeg1c_Totaldegree(poly p, int *l, const ring r)
Definition p_polys.cc:1006
long pLDeg0c(poly p, int *l, const ring r)
Definition p_polys.cc:771
long pLDeg0(poly p, int *l, const ring r)
Definition p_polys.cc:740
long p_Deg(poly a, const ring r)
Definition p_polys.cc:586
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1521
void rDebugPrint(const ring r)
Definition ring.cc:4153
static int rGetCurrSyzLimit(const ring r)
Definition ring.h:728
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition ring.h:725

◆ kHomModDeg()

long kHomModDeg ( poly  p,
const ring  r 
)

Definition at line 2424 of file kstd1.cc.

2425{
2426 int i;
2427 long j=0;
2428
2429 for (i=r->N;i>0;i--)
2430 j+=p_GetExp(p,i,r)*(*kHomW)[i-1];
2431 if (kModW == NULL) return j;
2432 i = __p_GetComp(p,r);
2433 if (i==0) return j;
2434 return j+(*kModW)[i-1];
2435}
VAR intvec * kModW
Definition kstd1.cc:2412
#define __p_GetComp(p, r)
Definition monomials.h:63
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition p_polys.h:469

◆ kInterRed()

ideal kInterRed ( ideal  F,
const ideal  Q 
)

Definition at line 3806 of file kstd1.cc.

3807{
3808#ifdef HAVE_PLURAL
3809 if(rIsPluralRing(currRing)) return kInterRedOld(F,Q);
3810#endif
3813 )
3814 return kInterRedOld(F,Q);
3815
3816 //return kInterRedOld(F,Q);
3817
3818 BITSET save1;
3820 //si_opt_1|=Sy_bit(OPT_NOT_SUGAR);
3822 //si_opt_1&= ~Sy_bit(OPT_REDTAIL);
3823 //si_opt_1&= ~Sy_bit(OPT_REDSB);
3824 //extern char * showOption() ;
3825 //Print("%s\n",showOption());
3826
3827 int need_retry;
3828 int counter=3;
3829 ideal res, res1;
3830 int elems;
3831 ideal null=NULL;
3832 if ((Q==NULL) || (!TEST_OPT_REDSB))
3833 {
3834 elems=idElem(F);
3836 }
3837 else
3838 {
3839 ideal FF=idSimpleAdd(F,Q);
3841 idDelete(&FF);
3842 null=idInit(1,1);
3843 if (need_retry)
3845 else
3846 res1=kNF(null,Q,res);
3847 idDelete(&res);
3848 res=res1;
3849 need_retry=1;
3850 }
3851 if (idElem(res)<=1) need_retry=0;
3852 while (need_retry && (counter>0))
3853 {
3854 #ifdef KDEBUG
3855 if (TEST_OPT_DEBUG) { Print("retry counter %d\n",counter); }
3856 #endif
3858 int new_elems=idElem(res1);
3859 counter -= (new_elems >= elems);
3860 elems = new_elems;
3861 idDelete(&res);
3862 if (idElem(res1)<=1) need_retry=0;
3863 if ((Q!=NULL) && (TEST_OPT_REDSB))
3864 {
3865 if (need_retry)
3867 else
3868 res=kNF(null,Q,res1);
3869 idDelete(&res1);
3870 }
3871 else
3872 res = res1;
3873 if (idElem(res)<=1) need_retry=0;
3874 }
3875 if (null!=NULL) idDelete(&null);
3878 return res;
3879}
CanonicalForm res
Definition facAbsFact.cc:60
#define idDelete(H)
delete an ideal
Definition ideals.h:29
#define idSimpleAdd(A, B)
Definition ideals.h:42
ideal kInterRedBba(ideal F, ideal Q, int &need_retry)
Definition kstd1.cc:3546
ideal kInterRedOld(ideal F, const ideal Q)
Definition kstd1.cc:3452
#define KSTD_NF_LAZY
Definition kstd1.h:17
#define KSTD_NF_NONORM
Definition kstd1.h:21
VAR unsigned si_opt_1
Definition options.c:5
#define SI_SAVE_OPT1(A)
Definition options.h:21
#define SI_RESTORE_OPT1(A)
Definition options.h:24
#define OPT_REDTHROUGH
Definition options.h:82
#define Sy_bit(x)
Definition options.h:31
#define TEST_OPT_REDSB
Definition options.h:104
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition ring.h:405
static BOOLEAN rField_is_numeric(const ring r)
Definition ring.h:520
ideal idInit(int idsize, int rank)
initialise an ideal / module
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
static int idElem(const ideal F)
number of non-zero polys in F
#define BITSET
Definition structs.h:16

◆ kInterRedBba()

ideal kInterRedBba ( ideal  F,
ideal  Q,
int need_retry 
)

Definition at line 3546 of file kstd1.cc.

3547{
3548 need_retry=0;
3549 int red_result = 1;
3550 int olddeg,reduc;
3552 // BOOLEAN toReset=FALSE;
3553 kStrategy strat=new skStrategy;
3554 tHomog h;
3555
3557 strat->LazyPass=20;
3558 else
3559 strat->LazyPass=2;
3560 strat->LazyDegree = 1;
3561 strat->ak = id_RankFreeModule(F,currRing);
3562 strat->syzComp = strat->ak;
3563 strat->kModW=kModW=NULL;
3564 strat->kHomW=kHomW=NULL;
3565 if (strat->ak == 0)
3566 {
3567 h = (tHomog)idHomIdeal(F,Q);
3568 }
3569 else if (!TEST_OPT_DEGBOUND)
3570 {
3571 h = (tHomog)idHomIdeal(F,Q);
3572 }
3573 else
3574 h = isNotHomog;
3575 if (h==isHomog)
3576 {
3577 strat->LazyPass*=2;
3578 }
3579 strat->homog=h;
3580#ifdef KDEBUG
3581 idTest(F);
3582#endif
3583
3584 initBuchMoraCrit(strat); /*set Gebauer, honey, sugarCrit*/
3586 initBuchMoraPosRing(strat);
3587 else
3588 initBuchMoraPos(strat);
3589 initBba(strat);
3590 /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/
3591 strat->posInL=posInL0; /* ord according pComp */
3592
3593 /*Shdl=*/initBuchMora(F, Q, strat);
3594 reduc = olddeg = 0;
3595
3596#ifndef NO_BUCKETS
3598 strat->use_buckets = 1;
3599#endif
3600
3601 // redtailBBa against T for inhomogeneous input
3602 if (!TEST_OPT_OLDSTD)
3603 withT = ! strat->homog;
3604
3605 // strat->posInT = posInT_pLength;
3606 kTest_TS(strat);
3607
3608#ifdef HAVE_TAIL_RING
3610#endif
3611
3612 /* compute------------------------------------------------------- */
3613 while (strat->Ll >= 0)
3614 {
3615 #ifdef KDEBUG
3616 if (TEST_OPT_DEBUG) messageSets(strat);
3617 #endif
3618 if (strat->Ll== 0) strat->interpt=TRUE;
3619 /* picks the last element from the lazyset L */
3620 strat->P = strat->L[strat->Ll];
3621 strat->Ll--;
3622
3623 if (strat->P.p1 == NULL)
3624 {
3625 // for input polys, prepare reduction
3626 strat->P.PrepareRed(strat->use_buckets);
3627 }
3628
3629 if (strat->P.p == NULL && strat->P.t_p == NULL)
3630 {
3631 red_result = 0;
3632 }
3633 else
3634 {
3635 if (TEST_OPT_PROT)
3636 message(strat->P.pFDeg(),
3637 &olddeg,&reduc,strat, red_result);
3638
3639 /* reduction of the element chosen from L */
3640 red_result = strat->red(&strat->P,strat);
3641 }
3642
3643 // reduction to non-zero new poly
3644 if (red_result == 1)
3645 {
3646 /* statistic */
3647 if (TEST_OPT_PROT) PrintS("s");
3648
3649 // get the polynomial (canonicalize bucket, make sure P.p is set)
3650 strat->P.GetP(strat->lmBin);
3651
3652 int pos=posInS(strat,strat->sl,strat->P.p,strat->P.ecart);
3653
3654 // reduce the tail and normalize poly
3655 // in the ring case we cannot expect LC(f) = 1,
3656 // therefore we call pCleardenom instead of pNorm
3658 {
3659 strat->P.pCleardenom();
3660 if (0)
3661 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3662 {
3663 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3664 strat->P.pCleardenom();
3665 }
3666 }
3667 else
3668 {
3669 strat->P.pNorm();
3670 if (0)
3671 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3672 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3673 }
3674
3675#ifdef KDEBUG
3676 if (TEST_OPT_DEBUG){PrintS("new s:");strat->P.wrp();PrintLn();}
3677#endif
3678
3679 // enter into S, L, and T
3680 if ((!TEST_OPT_IDLIFT) || (pGetComp(strat->P.p) <= strat->syzComp))
3681 {
3682 enterT(strat->P, strat);
3683 // posInS only depends on the leading term
3684 strat->enterS(strat->P, pos, strat, strat->tl);
3685
3686 if (pos<strat->sl)
3687 {
3688 need_retry++;
3689 // move all "larger" elements fromS to L
3690 // remove them from T
3691 int ii=pos+1;
3692 for(;ii<=strat->sl;ii++)
3693 {
3694 LObject h;
3695 h.Clear();
3696 h.tailRing=strat->tailRing;
3697 h.p=strat->S[ii]; strat->S[ii]=NULL;
3698 strat->initEcart(&h);
3699 h.sev=strat->sevS[ii];
3700 int jj=strat->tl;
3701 while (jj>=0)
3702 {
3703 if (strat->T[jj].p==h.p)
3704 {
3705 strat->T[jj].p=NULL;
3706 if (jj<strat->tl)
3707 {
3708 memmove(&(strat->T[jj]),&(strat->T[jj+1]),
3709 (strat->tl-jj)*sizeof(strat->T[jj]));
3710 memmove(&(strat->sevT[jj]),&(strat->sevT[jj+1]),
3711 (strat->tl-jj)*sizeof(strat->sevT[jj]));
3712 }
3713 strat->tl--;
3714 break;
3715 }
3716 jj--;
3717 }
3718 int lpos=strat->posInL(strat->L,strat->Ll,&h,strat);
3719 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,lpos);
3720 #ifdef KDEBUG
3721 if (TEST_OPT_DEBUG)
3722 {
3723 Print("move S[%d] -> L[%d]: ",ii,pos);
3724 p_wrp(h.p,currRing, strat->tailRing);
3725 PrintLn();
3726 }
3727 #endif
3728 }
3729 if (strat->fromQ!=NULL)
3730 {
3731 for(ii=pos+1;ii<=strat->sl;ii++) strat->fromQ[ii]=0;
3732 }
3733 strat->sl=pos;
3734 }
3735 }
3736 else
3737 {
3738 // clean P
3739 }
3740 kDeleteLcm(&strat->P);
3741 }
3742
3743#ifdef KDEBUG
3744 if (TEST_OPT_DEBUG)
3745 {
3746 messageSets(strat);
3747 }
3748 strat->P.Clear();
3749#endif
3750 //kTest_TS(strat);: i_r out of sync in kInterRedBba, but not used!
3751 }
3752#ifdef KDEBUG
3753 //if (TEST_OPT_DEBUG) messageSets(strat);
3754#endif
3755 /* complete reduction of the standard basis--------- */
3756
3757 if((need_retry<=0) && (TEST_OPT_REDSB))
3758 {
3759 completeReduce(strat);
3760 if (strat->completeReduce_retry)
3761 {
3762 // completeReduce needed larger exponents, retry
3763 // hopefully: kStratChangeTailRing already provided a larger tailRing
3764 // (otherwise: it will fail again)
3766 completeReduce(strat);
3767 if (strat->completeReduce_retry)
3768 {
3769#ifdef HAVE_TAIL_RING
3770 if(currRing->bitmask>strat->tailRing->bitmask)
3771 {
3772 // retry without T
3774 cleanT(strat);strat->tailRing=currRing;
3775 int i;
3776 for(i=strat->sl;i>=0;i--) strat->S_2_R[i]=-1;
3777 completeReduce(strat);
3778 }
3779 if (strat->completeReduce_retry)
3780#endif
3781 Werror("exponent bound is %ld",currRing->bitmask);
3782 }
3783 }
3784 }
3785 else if (TEST_OPT_PROT) PrintLn();
3786
3787
3788 /* release temp data-------------------------------- */
3789 exitBuchMora(strat);
3790// if (TEST_OPT_WEIGHTM)
3791// {
3792// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
3793// if (ecartWeights)
3794// {
3795// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
3796// ecartWeights=NULL;
3797// }
3798// }
3799 //if (TEST_OPT_PROT) messageStat(0/*hilbcount*/,strat);
3800 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
3801 ideal res=strat->Shdl;
3802 strat->Shdl=NULL;
3803 delete strat;
3804 return res;
3805}
intvec * kModW
Definition kutil.h:335
int * S_2_R
Definition kutil.h:342
omBin lmBin
Definition kutil.h:344
polyset S
Definition kutil.h:306
unsigned long * sevT
Definition kutil.h:325
intvec * kHomW
Definition kutil.h:336
ideal Shdl
Definition kutil.h:303
intset fromQ
Definition kutil.h:321
char interpt
Definition kutil.h:369
char completeReduce_retry
Definition kutil.h:401
LObject P
Definition kutil.h:302
int Lmax
Definition kutil.h:351
int sl
Definition kutil.h:348
unsigned long * sevS
Definition kutil.h:322
#define idTest(id)
Definition ideals.h:47
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition ideals.h:91
KINLINE poly redtailBba(poly p, int pos, kStrategy strat, BOOLEAN normalize)
Definition kInline.h:1209
void initBba(kStrategy strat)
Definition kstd1.cc:1685
VAR intvec * kHomW
Definition kstd1.cc:2412
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition kutil.cc:7465
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:9748
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition kutil.cc:1274
void initBuchMoraPos(kStrategy strat)
Definition kutil.cc:9577
void exitBuchMora(kStrategy strat)
Definition kutil.cc:9833
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition kutil.cc:4668
void cleanT(kStrategy strat)
Definition kutil.cc:563
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition kutil.cc:10076
void kStratInitChangeTailRing(kStrategy strat)
Definition kutil.cc:11050
void initBuchMoraCrit(kStrategy strat)
Definition kutil.cc:9432
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition kutil.cc:10282
void initBuchMoraPosRing(kStrategy strat)
Definition kutil.cc:9662
void messageSets(kStrategy strat)
Definition kutil.cc:7538
static void kDeleteLcm(LObject *P)
Definition kutil.h:868
#define TEST_OPT_OLDSTD
Definition options.h:123
#define TEST_OPT_NOT_BUCKETS
Definition options.h:105
#define pGetComp(p)
Component.
Definition polys.h:37
void Werror(const char *fmt,...)
Definition reporter.cc:189
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition ring.h:553
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
tHomog
Definition structs.h:35
@ isHomog
Definition structs.h:37
@ isNotHomog
Definition structs.h:36

◆ kInterRedOld()

ideal kInterRedOld ( ideal  F,
const ideal  Q 
)

Definition at line 3452 of file kstd1.cc.

3453{
3454 int j;
3455 kStrategy strat = new skStrategy;
3456
3457 ideal tempF = F;
3458 ideal tempQ = Q;
3459
3460#ifdef HAVE_PLURAL
3461 if(rIsSCA(currRing))
3462 {
3463 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3464 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3466
3467 // this should be done on the upper level!!! :
3468 // tempQ = SCAQuotient(currRing);
3469
3470 if(Q == currRing->qideal)
3472 }
3473#endif
3474
3475// if (TEST_OPT_PROT)
3476// {
3477// writeTime("start InterRed:");
3478// mflush();
3479// }
3480 //strat->syzComp = 0;
3481 strat->kAllAxis = (currRing->ppNoether) != NULL;
3482 strat->kNoether=pCopy((currRing->ppNoether));
3484 initBuchMoraCrit(strat);
3485 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
3486 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
3487 strat->enterS = enterSBba;
3488 strat->posInT = posInT17;
3489 strat->initEcart = initEcartNormal;
3490 strat->sl = -1;
3491 strat->tl = -1;
3492 strat->tmax = setmaxT;
3493 strat->T = initT();
3494 strat->R = initR();
3495 strat->sevT = initsevT();
3497 initS(tempF, tempQ, strat);
3498 if (TEST_OPT_REDSB)
3499 strat->noTailReduction=FALSE;
3500 updateS(TRUE,strat);
3502 completeReduce(strat);
3503 //else if (TEST_OPT_PROT) PrintLn();
3504 cleanT(strat);
3505 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
3506 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
3507 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
3508 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
3509 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
3510 omfree(strat->sevT);
3511 omfree(strat->S_2_R);
3512 omfree(strat->R);
3513
3514 if (strat->fromQ)
3515 {
3516 for (j=IDELEMS(strat->Shdl)-1;j>=0;j--)
3517 {
3518 if(strat->fromQ[j]) pDelete(&strat->Shdl->m[j]);
3519 }
3520 omFree((ADDRESS)strat->fromQ);
3521 strat->fromQ=NULL;
3522 }
3523// if (TEST_OPT_PROT)
3524// {
3525// writeTime("end Interred:");
3526// mflush();
3527// }
3528 ideal shdl=strat->Shdl;
3530 if (strat->fromQ)
3531 {
3532 omfree(strat->fromQ);
3533 strat->fromQ=NULL;
3535 idDelete(&shdl);
3536 shdl=res;
3537 }
3538 delete(strat);
3539#ifdef HAVE_PLURAL
3540 if( tempF != F )
3542#endif
3543 return shdl;
3544}
intset ecartS
Definition kutil.h:309
TObject ** R
Definition kutil.h:340
int tmax
Definition kutil.h:350
KINLINE TSet initT()
Definition kInline.h:84
KINLINE TObject ** initR()
Definition kInline.h:95
KINLINE unsigned long * initsevT()
Definition kInline.h:100
ideal kInterRed(ideal F, const ideal Q)
Definition kstd1.cc:3806
void initS(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:7588
void updateS(BOOLEAN toT, kStrategy strat)
Definition kutil.cc:8556
#define setmaxT
Definition kutil.h:33
class sTObject TObject
Definition kutil.h:57
static bool rIsSCA(const ring r)
Definition nc.h:190
ideal id_KillSquares(const ideal id, const short iFirstAltVar, const short iLastAltVar, const ring r, const bool bSkipZeroes)
Definition sca.cc:1518
#define omfree(addr)
#define omFree(addr)
#define pDelete(p_ptr)
Definition polys.h:186
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition polys.h:70
ideal SCAQuotient(const ring r)
Definition sca.h:10
static short scaLastAltVar(ring r)
Definition sca.h:25
static short scaFirstAltVar(ring r)
Definition sca.h:18
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix

◆ kMin_std()

ideal kMin_std ( ideal  F,
ideal  Q,
tHomog  h,
intvec **  w,
ideal M,
intvec hilb,
int  syzComp,
int  reduced 
)

Definition at line 3074 of file kstd1.cc.

3076{
3077 if(idIs0(F))
3078 {
3079 M=idInit(1,F->rank);
3080 return idInit(1,F->rank);
3081 }
3083 {
3084 ideal sb;
3085 sb = kStd(F, Q, h, w, hilb);
3087 if(IDELEMS(sb) <= IDELEMS(F))
3088 {
3089 M = idCopy(sb);
3090 idSkipZeroes(M);
3091 return(sb);
3092 }
3093 else
3094 {
3095 M = idCopy(F);
3096 idSkipZeroes(M);
3097 return(sb);
3098 }
3099 }
3100 ideal r=NULL;
3101 int Kstd1_OldDeg = Kstd1_deg,i;
3103 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
3106 kStrategy strat=new skStrategy;
3107
3109 strat->syzComp = syzComp;
3111 strat->LazyPass=20;
3112 else
3113 strat->LazyPass=2;
3114 strat->LazyDegree = 1;
3115 strat->minim=(reduced % 2)+1;
3116 strat->ak = id_RankFreeModule(F,currRing);
3117 if (delete_w)
3118 {
3119 temp_w=new intvec((strat->ak)+1);
3120 w = &temp_w;
3121 }
3122 if (h==testHomog)
3123 {
3124 if (strat->ak == 0)
3125 {
3126 h = (tHomog)idHomIdeal(F,Q);
3127 w=NULL;
3128 }
3129 else
3130 {
3131 h = (tHomog)idHomModule(F,Q,w);
3132 }
3133 }
3134 if (h==isHomog)
3135 {
3136 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3137 {
3138 kModW = *w;
3139 strat->kModW = *w;
3140 assume(currRing->pFDeg != NULL && currRing->pLDeg != NULL);
3141 strat->pOrigFDeg = currRing->pFDeg;
3142 strat->pOrigLDeg = currRing->pLDeg;
3144
3145 toReset = TRUE;
3146 if (reduced>1)
3147 {
3149 Kstd1_deg = -1;
3150 for (i=IDELEMS(F)-1;i>=0;i--)
3151 {
3152 if ((F->m[i]!=NULL) && (currRing->pFDeg(F->m[i],currRing)>=Kstd1_deg))
3153 Kstd1_deg = currRing->pFDeg(F->m[i],currRing)+1;
3154 }
3155 }
3156 }
3157 currRing->pLexOrder = TRUE;
3158 strat->LazyPass*=2;
3159 }
3160 strat->homog=h;
3161 ideal SB=NULL;
3163 {
3164 r=idMinBase(F,&SB); // SB and M via minbase
3165 strat->M=r;
3166 r=SB;
3167 }
3168 else
3169 {
3170 if (w!=NULL)
3171 r=bba(F,Q,*w,hilb,strat);
3172 else
3173 r=bba(F,Q,NULL,hilb,strat);
3174 }
3175#ifdef KDEBUG
3176 {
3177 int i;
3178 for (i=IDELEMS(r)-1; i>=0; i--) pTest(r->m[i]);
3179 }
3180#endif
3181 idSkipZeroes(r);
3182 if (toReset)
3183 {
3185 kModW = NULL;
3186 }
3187 currRing->pLexOrder = b;
3188 if ((delete_w)&&(temp_w!=NULL)) delete temp_w;
3189 if ((IDELEMS(r)==1) && (r->m[0]!=NULL) && pIsConstant(r->m[0]) && (strat->ak==0))
3190 {
3191 M=idInit(1,F->rank);
3192 M->m[0]=pOne();
3193 //if (strat->ak!=0) { pSetComp(M->m[0],strat->ak); pSetmComp(M->m[0]); }
3194 if (strat->M!=NULL) idDelete(&strat->M);
3195 }
3196 else if (strat->M==NULL)
3197 {
3198 M=idInit(1,F->rank);
3199 WarnS("no minimal generating set computed");
3200 }
3201 else
3202 {
3203 idSkipZeroes(strat->M);
3204 M=strat->M;
3205 strat->M=NULL;
3206 }
3207 delete(strat);
3208 if (reduced>2)
3209 {
3211 if (!oldDegBound)
3212 si_opt_1 &= ~Sy_bit(OPT_DEGBOUND);
3213 }
3214 else
3215 {
3216 if (IDELEMS(M)>IDELEMS(r))
3217 {
3218 idDelete(&M);
3219 M=idCopy(r);
3220 }
3221 }
3222 return r;
3223}
CanonicalForm b
Definition cfModGcd.cc:4111
int minim
Definition kutil.h:357
ideal M
Definition kutil.h:305
#define WarnS
Definition emacs.cc:78
const CanonicalForm & w
Definition facAbsFact.cc:51
ideal idMinBase(ideal h1, ideal *SB)
Definition ideals.cc:51
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition ideals.h:96
ideal idCopy(ideal A)
Definition ideals.h:60
long kModDeg(poly p, const ring r)
Definition kstd1.cc:2414
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition kstd1.cc:2471
EXTERN_VAR int Kstd1_deg
Definition kstd1.h:50
ideal bba(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:2609
#define TEST_OPT_RETURN_SB
Definition options.h:112
#define OPT_DEGBOUND
Definition options.h:90
#define pTest(p)
Definition polys.h:414
#define pIsConstant(p)
like above, except that Comp must be 0
Definition polys.h:238
#define pOne()
Definition polys.h:315
#define M
Definition sirandom.c:25
@ testHomog
Definition structs.h:38

◆ kModDeg()

long kModDeg ( poly  p,
const ring  r 
)

Definition at line 2414 of file kstd1.cc.

2415{
2416 long o=p_WDegree(p, r);
2417 long i=__p_GetComp(p, r);
2418 if (i==0) return o;
2419 //assume((i>0) && (i<=kModW->length()));
2420 if (i<=kModW->length())
2421 return o+(*kModW)[i-1];
2422 return o;
2423}
long p_WDegree(poly p, const ring r)
Definition p_polys.cc:715

◆ kMoraUseBucket()

static BOOLEAN kMoraUseBucket ( kStrategy  strat)
static

Definition at line 3882 of file kstd1.cc.

3883{
3884#ifdef MORA_USE_BUCKETS
3886 return FALSE;
3887 if (strat->red == redFirst)
3888 {
3889#ifdef NO_LDEG
3890 if (strat->syzComp==0)
3891 return TRUE;
3892#else
3893 if ((strat->homog || strat->honey) && (strat->syzComp==0))
3894 return TRUE;
3895#endif
3896 }
3897 else
3898 {
3899 assume(strat->red == redEcart || strat->red == redRiloc || strat->red == redRiloc_Z);
3900 if (strat->honey && (strat->syzComp==0))
3901 return TRUE;
3902 }
3903#endif
3904 return FALSE;
3905}

◆ kNF() [1/2]

ideal kNF ( ideal  F,
ideal  Q,
ideal  p,
int  syzComp,
int  lazyReduce 
)

Definition at line 3323 of file kstd1.cc.

3324{
3325 ideal res;
3326 if (TEST_OPT_PROT)
3327 {
3328 Print("(S:%d)",IDELEMS(p));mflush();
3329 }
3330 if (idIs0(p))
3331 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3332
3333 ideal pp = p;
3334#ifdef HAVE_PLURAL
3335 if(rIsSCA(currRing))
3336 {
3337 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3338 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3340
3341 if(Q == currRing->qideal)
3343 }
3344#endif
3345
3346 if ((Q!=NULL)&&(idIs0(Q))) Q=NULL;
3347
3348 if ((idIs0(F))&&(Q==NULL))
3349 {
3350#ifdef HAVE_PLURAL
3351 if(p != pp)
3352 return pp;
3353#endif
3354 return idCopy(p); /*F+Q=0*/
3355 }
3356
3357 kStrategy strat=new skStrategy;
3358 strat->syzComp = syzComp;
3360 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3361 {
3362 strat->ak = si_max(strat->ak,(int)F->rank);
3363 }
3364
3366 {
3367#ifdef HAVE_SHIFTBBA
3368 if (currRing->isLPring)
3369 {
3370 WerrorS("No local ordering possible for shift algebra");
3371 return(NULL);
3372 }
3373#endif
3374 res=kNF1(F,Q,pp,strat,lazyReduce);
3375 }
3376 else
3377 res=kNF2(F,Q,pp,strat,lazyReduce);
3378 delete(strat);
3379
3380#ifdef HAVE_PLURAL
3381 if(pp != p)
3383#endif
3384
3385 return res;
3386}
static int si_max(const int a, const int b)
Definition auxiliary.h:124
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
void WerrorS(const char *s)
Definition feFopen.cc:24
poly kNF1(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition kstd1.cc:2122
poly kNF2(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition kstd2.cc:3929

◆ kNF() [2/2]

poly kNF ( ideal  F,
ideal  Q,
poly  p,
int  syzComp,
int  lazyReduce 
)

Definition at line 3225 of file kstd1.cc.

3226{
3227 if (p==NULL)
3228 return NULL;
3229
3230 poly pp = p;
3231
3232#ifdef HAVE_PLURAL
3233 if(rIsSCA(currRing))
3234 {
3235 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3236 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3238
3239 if(Q == currRing->qideal)
3241 }
3242#endif
3243 if((Q!=NULL) &&(idIs0(Q))) Q=NULL;
3244
3245 if ((idIs0(F))&&(Q==NULL))
3246 {
3247#ifdef HAVE_PLURAL
3248 if(p != pp)
3249 return pp;
3250#endif
3251 return pCopy(p); /*F+Q=0*/
3252 }
3253
3254 kStrategy strat=new skStrategy;
3255 strat->syzComp = syzComp;
3257 poly res;
3258
3260 {
3261#ifdef HAVE_SHIFTBBA
3262 if (currRing->isLPring)
3263 {
3264 WerrorS("No local ordering possible for shift algebra");
3265 return(NULL);
3266 }
3267#endif
3268 res=kNF1(F,Q,pp,strat,lazyReduce);
3269 }
3270 else
3271 res=kNF2(F,Q,pp,strat,lazyReduce);
3272 delete(strat);
3273
3274#ifdef HAVE_PLURAL
3275 if(pp != p)
3276 p_Delete(&pp, currRing);
3277#endif
3278 return res;
3279}
poly p_KillSquares(const poly p, const short iFirstAltVar, const short iLastAltVar, const ring r)
Definition sca.cc:1463
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:901
#define pMaxComp(p)
Definition polys.h:299

◆ kNF1() [1/2]

ideal kNF1 ( ideal  F,
ideal  Q,
ideal  q,
kStrategy  strat,
int  lazyReduce 
)

Definition at line 2263 of file kstd1.cc.

2264{
2265 assume(!idIs0(q));
2266 assume(!(idIs0(F)&&(Q==NULL)));
2267
2268// lazy_reduce flags: can be combined by |
2269//#define KSTD_NF_LAZY 1
2270 // do only a reduction of the leading term
2271//#define KSTD_NF_ECART 2
2272 // only local: reduce even with bad ecart
2273 poly p;
2274 int i;
2275 int j;
2276 int o;
2277 LObject h;
2278 ideal res;
2279 BITSET save1;
2281
2282 //if (idIs0(q)) return idInit(IDELEMS(q),si_max(q->rank,F->rank));
2283 //if ((idIs0(F))&&(Q==NULL))
2284 // return idCopy(q); /*F=0*/
2285 //strat->ak = si_max(idRankFreeModule(F),idRankFreeModule(q));
2286 /*- creating temp data structures------------------- -*/
2287 strat->kAllAxis = (currRing->ppNoether) != NULL;
2288 strat->kNoether=pCopy((currRing->ppNoether));
2291 && (0<Kstd1_deg)
2292 && ((strat->kNoether==NULL)
2294 {
2295 pLmDelete(&strat->kNoether);
2296 strat->kNoether=pOne();
2297 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2298 pSetm(strat->kNoether);
2299 //strat->kAllAxis=TRUE;
2300 }
2301 initBuchMoraCrit(strat);
2303 initBuchMoraPosRing(strat);
2304 else
2305 initBuchMoraPos(strat);
2306 initMora(F,strat);
2307 strat->enterS = enterSMoraNF;
2308 /*- set T -*/
2309 strat->tl = -1;
2310 strat->tmax = setmaxT;
2311 strat->T = initT();
2312 strat->R = initR();
2313 strat->sevT = initsevT();
2314 /*- set S -*/
2315 strat->sl = -1;
2316 /*- init local data struct.-------------------------- -*/
2317 /*Shdl=*/initS(F,Q,strat);
2318 if ((strat->ak!=0)
2319 && (strat->kNoether!=NULL))
2320 {
2321 if (strat->ak!=1)
2322 {
2323 pSetComp(strat->kNoether,1);
2324 pSetmComp(strat->kNoether);
2325 poly p=pHead(strat->kNoether);
2326 pSetComp(p,strat->ak);
2327 pSetmComp(p);
2328 p=pAdd(strat->kNoether,p);
2329 strat->kNoether=pNext(p);
2331 }
2332 }
2333 if (((lazyReduce & KSTD_NF_LAZY)==0)
2334 && (!rField_is_Ring(currRing)))
2335 {
2336 for (i=strat->sl; i>=0; i--)
2337 pNorm(strat->S[i]);
2338 }
2339 /*- compute------------------------------------------- -*/
2340 res=idInit(IDELEMS(q),strat->ak);
2341 for (i=0; i<IDELEMS(q); i++)
2342 {
2343 if (q->m[i]!=NULL)
2344 {
2345 p = pCopy(q->m[i]);
2346 deleteHC(&p,&o,&j,strat);
2347 if (p!=NULL)
2348 {
2349 /*- puts the elements of S also to T -*/
2350 for (j=0; j<=strat->sl; j++)
2351 {
2352 h.p = strat->S[j];
2353 h.ecart = strat->ecartS[j];
2354 h.pLength = h.length = pLength(h.p);
2355 if (strat->sevS[j] == 0) strat->sevS[j] = pGetShortExpVector(h.p);
2356 else assume(strat->sevS[j] == pGetShortExpVector(h.p));
2357 h.sev = strat->sevS[j];
2358 h.SetpFDeg();
2360 enterT_strong(h,strat);
2361 else
2362 enterT(h,strat);
2363 }
2364 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2366 {
2367 p = redMoraNFRing(p,strat, lazyReduce);
2368 }
2369 else
2370 p = redMoraNF(p,strat, lazyReduce);
2371 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2372 {
2373 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2374 p = redtail(p,strat->sl,strat);
2375 }
2376 cleanT(strat);
2377 }
2378 res->m[i]=p;
2379 }
2380 //else
2381 // res->m[i]=NULL;
2382 }
2383 /*- release temp data------------------------------- -*/
2384 assume(strat->L==NULL); /*strat->L unused */
2385 assume(strat->B==NULL); /*strat->B unused */
2386 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2387 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2388 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2389 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2390 omFree(strat->sevT);
2391 omFree(strat->S_2_R);
2392 omFree(strat->R);
2393 omfree((ADDRESS)strat->fromQ);
2394 strat->fromQ=NULL;
2395 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2396// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2397// {
2398// pFDeg=strat->pOrigFDeg;
2399// pLDeg=strat->pOrigLDeg;
2400// if (ecartWeights)
2401// {
2402// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2403// ecartWeights=NULL;
2404// }
2405// }
2406 idDelete(&strat->Shdl);
2408 if (TEST_OPT_PROT) PrintLn();
2409 return res;
2410}
LSet B
Definition kutil.h:328
void initMora(ideal F, kStrategy strat)
Definition kstd1.cc:1815
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1677
static poly redMoraNFRing(poly h, kStrategy strat, int flag)
Definition kstd1.cc:1080
poly redtail(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:6838
void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext)
Definition kutil.cc:291
#define OPT_REDTAIL
Definition options.h:91
#define TEST_OPT_STAIRCASEBOUND
Definition options.h:115
static void p_LmDelete(poly p, const ring r)
Definition p_polys.h:723
#define pAdd(p, q)
Definition polys.h:203
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition polys.h:67
#define pSetm(p)
Definition polys.h:271
void pNorm(poly p)
Definition polys.h:362
#define pSetComp(p, v)
Definition polys.h:38
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition polys.h:76
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition polys.h:152
#define pSetmComp(p)
TODO:
Definition polys.h:273
#define pSetExp(p, i, v)
Definition polys.h:42
#define pWTotaldegree(p)
Definition polys.h:283

◆ kNF1() [2/2]

poly kNF1 ( ideal  F,
ideal  Q,
poly  q,
kStrategy  strat,
int  lazyReduce 
)

Definition at line 2122 of file kstd1.cc.

2123{
2124 assume(q!=NULL);
2125 assume(!(idIs0(F)&&(Q==NULL)));
2126
2127// lazy_reduce flags: can be combined by |
2128//#define KSTD_NF_LAZY 1
2129 // do only a reduction of the leading term
2130//#define KSTD_NF_ECART 2
2131 // only local: reduce even with bad ecart
2132 poly p;
2133 int i;
2134 int j;
2135 int o;
2136 LObject h;
2137 BITSET save1;
2139
2140 //if ((idIs0(F))&&(Q==NULL))
2141 // return pCopy(q); /*F=0*/
2142 //strat->ak = si_max(idRankFreeModule(F),pMaxComp(q));
2143 /*- creating temp data structures------------------- -*/
2144 strat->kAllAxis = (currRing->ppNoether) != NULL;
2145 strat->kNoether = pCopy((currRing->ppNoether));
2148 si_opt_1&=~Sy_bit(OPT_INTSTRATEGY);
2150 && (! TEST_V_DEG_STOP)
2151 && (0<Kstd1_deg)
2152 && ((strat->kNoether==NULL)
2154 {
2155 pLmDelete(&strat->kNoether);
2156 strat->kNoether=pOne();
2157 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2158 pSetm(strat->kNoether);
2159 // strat->kAllAxis=TRUE;
2160 }
2161 initBuchMoraCrit(strat);
2163 initBuchMoraPosRing(strat);
2164 else
2165 initBuchMoraPos(strat);
2166 initMora(F,strat);
2167 strat->enterS = enterSMoraNF;
2168 /*- set T -*/
2169 strat->tl = -1;
2170 strat->tmax = setmaxT;
2171 strat->T = initT();
2172 strat->R = initR();
2173 strat->sevT = initsevT();
2174 /*- set S -*/
2175 strat->sl = -1;
2176 /*- init local data struct.-------------------------- -*/
2177 /*Shdl=*/initS(F,Q,strat);
2178 if ((strat->ak!=0)
2179 && (strat->kAllAxis)) /*never true for ring-cf*/
2180 {
2181 if (strat->ak!=1)
2182 {
2183 pSetComp(strat->kNoether,1);
2184 pSetmComp(strat->kNoether);
2185 poly p=pHead(strat->kNoether);
2186 pSetComp(p,strat->ak);
2187 pSetmComp(p);
2188 p=pAdd(strat->kNoether,p);
2189 strat->kNoether=pNext(p);
2191 }
2192 }
2193 if (((lazyReduce & KSTD_NF_LAZY)==0)
2194 && (!rField_is_Ring(currRing)))
2195 {
2196 for (i=strat->sl; i>=0; i--)
2197 pNorm(strat->S[i]);
2198 }
2199 /*- puts the elements of S also to T -*/
2200 for (i=0; i<=strat->sl; i++)
2201 {
2202 h.p = strat->S[i];
2203 h.ecart = strat->ecartS[i];
2204 if (strat->sevS[i] == 0) strat->sevS[i] = pGetShortExpVector(h.p);
2205 else assume(strat->sevS[i] == pGetShortExpVector(h.p));
2206 h.length = pLength(h.p);
2207 h.sev = strat->sevS[i];
2208 h.SetpFDeg();
2209 enterT(h,strat);
2210 }
2211#ifdef KDEBUG
2212// kDebugPrint(strat);
2213#endif
2214 /*- compute------------------------------------------- -*/
2215 p = pCopy(q);
2216 deleteHC(&p,&o,&j,strat);
2217 kTest(strat);
2218 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2219 if (BVERBOSE(23)) kDebugPrint(strat);
2221 {
2222 if (p!=NULL) p = redMoraNFRing(p,strat, lazyReduce & KSTD_NF_ECART);
2223 }
2224 else
2225 {
2226 if (p!=NULL) p = redMoraNF(p,strat, lazyReduce & KSTD_NF_ECART);
2227 }
2228 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2229 {
2230 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2231 p = redtail(p,strat->sl,strat);
2232 }
2233 /*- release temp data------------------------------- -*/
2234 cleanT(strat);
2235 assume(strat->L==NULL); /*strat->L unused */
2236 assume(strat->B==NULL); /*strat->B unused */
2237 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2238 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2239 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2240 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2241 omFree(strat->sevT);
2242 omFree(strat->S_2_R);
2243 omFree(strat->R);
2244
2245 omfree((ADDRESS)strat->fromQ);
2246 strat->fromQ=NULL;
2247 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2248// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2249// {
2250// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2251// if (ecartWeights)
2252// {
2253// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2254// ecartWeights=NULL;
2255// }
2256// }
2257 idDelete(&strat->Shdl);
2259 if (TEST_OPT_PROT) PrintLn();
2260 return p;
2261}
void kDebugPrint(kStrategy strat)
Definition kutil.cc:11496
#define KSTD_NF_ECART
Definition kstd1.h:19
BOOLEAN kTest(kStrategy strat)
Definition kutil.cc:1010
#define OPT_INTSTRATEGY
Definition options.h:92
#define BVERBOSE(a)
Definition options.h:35
#define TEST_V_DEG_STOP
Definition options.h:137

◆ kNFBound() [1/2]

ideal kNFBound ( ideal  F,
ideal  Q,
ideal  p,
int  bound,
int  syzComp,
int  lazyReduce 
)

Definition at line 3388 of file kstd1.cc.

3389{
3390 ideal res;
3391 if (TEST_OPT_PROT)
3392 {
3393 Print("(S:%d)",IDELEMS(p));mflush();
3394 }
3395 if (idIs0(p))
3396 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3397
3398 ideal pp = p;
3399#ifdef HAVE_PLURAL
3400 if(rIsSCA(currRing))
3401 {
3402 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3403 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3405
3406 if(Q == currRing->qideal)
3408 }
3409#endif
3410
3411 if ((idIs0(F))&&(Q==NULL))
3412 {
3413#ifdef HAVE_PLURAL
3414 if(p != pp)
3415 return pp;
3416#endif
3417 return idCopy(p); /*F+Q=0*/
3418 }
3419
3420 kStrategy strat=new skStrategy;
3421 strat->syzComp = syzComp;
3423 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3424 {
3425 strat->ak = si_max(strat->ak,(int)F->rank);
3426 }
3427
3428 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3429 delete(strat);
3430
3431#ifdef HAVE_PLURAL
3432 if(pp != p)
3434#endif
3435
3436 return res;
3437}
static CanonicalForm bound(const CFMatrix &M)
Definition cf_linsys.cc:460
poly kNF2Bound(ideal F, ideal Q, poly q, int bound, kStrategy strat, int lazyReduce)
Definition kstd2.cc:4012

◆ kNFBound() [2/2]

poly kNFBound ( ideal  F,
ideal  Q,
poly  p,
int  bound,
int  syzComp,
int  lazyReduce 
)

Definition at line 3281 of file kstd1.cc.

3282{
3283 if (p==NULL)
3284 return NULL;
3285
3286 poly pp = p;
3287
3288#ifdef HAVE_PLURAL
3289 if(rIsSCA(currRing))
3290 {
3291 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3292 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3294
3295 if(Q == currRing->qideal)
3297 }
3298#endif
3299
3300 if ((idIs0(F))&&(Q==NULL))
3301 {
3302#ifdef HAVE_PLURAL
3303 if(p != pp)
3304 return pp;
3305#endif
3306 return pCopy(p); /*F+Q=0*/
3307 }
3308
3309 kStrategy strat=new skStrategy;
3310 strat->syzComp = syzComp;
3312 poly res;
3313 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3314 delete(strat);
3315
3316#ifdef HAVE_PLURAL
3317 if(pp != p)
3318 p_Delete(&pp, currRing);
3319#endif
3320 return res;
3321}

◆ kOptimizeLDeg()

static void kOptimizeLDeg ( pLDegProc  ldeg,
kStrategy  strat 
)
static

Definition at line 100 of file kstd1.cc.

101{
102// if (strat->ak == 0 && !rIsSyzIndexRing(currRing))
103 strat->length_pLength = TRUE;
104// else
105// strat->length_pLength = FALSE;
106
107 if ((ldeg == pLDeg0c /*&& !rIsSyzIndexRing(currRing)*/) ||
108 (ldeg == pLDeg0 && strat->ak == 0))
109 {
110 strat->LDegLast = TRUE;
111 }
112 else
113 {
114 strat->LDegLast = FALSE;
115 }
116}
char LDegLast
Definition kutil.h:383
char length_pLength
Definition kutil.h:385

◆ kSba()

ideal kSba ( ideal  F,
ideal  Q,
tHomog  h,
intvec **  w,
int  sbaOrder,
int  arri,
intvec hilb,
int  syzComp,
int  newIdeal,
intvec vw 
)

Definition at line 2673 of file kstd1.cc.

2675{
2676 if(idIs0(F))
2677 return idInit(1,F->rank);
2679 {
2680 ideal r;
2681 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2683 kStrategy strat=new skStrategy;
2684 strat->sbaOrder = sbaOrder;
2685 if (arri!=0)
2686 {
2687 strat->rewCrit1 = arriRewDummy;
2688 strat->rewCrit2 = arriRewCriterion;
2690 }
2691 else
2692 {
2696 }
2697
2699 strat->syzComp = syzComp;
2700 if (TEST_OPT_SB_1)
2701 //if(!rField_is_Ring(currRing)) // always true here
2702 strat->newIdeal = newIdeal;
2704 strat->LazyPass=20;
2705 else
2706 strat->LazyPass=2;
2707 strat->LazyDegree = 1;
2711 strat->ak = id_RankFreeModule(F,currRing);
2712 strat->kModW=kModW=NULL;
2713 strat->kHomW=kHomW=NULL;
2714 if (vw != NULL)
2715 {
2716 currRing->pLexOrder=FALSE;
2717 strat->kHomW=kHomW=vw;
2718 strat->pOrigFDeg = currRing->pFDeg;
2719 strat->pOrigLDeg = currRing->pLDeg;
2721 toReset = TRUE;
2722 }
2723 if (h==testHomog)
2724 {
2725 if (strat->ak == 0)
2726 {
2727 h = (tHomog)idHomIdeal(F,Q);
2728 w=NULL;
2729 }
2730 else if (!TEST_OPT_DEGBOUND)
2731 {
2732 if (w!=NULL)
2733 h = (tHomog)idHomModule(F,Q,w);
2734 else
2735 h = (tHomog)idHomIdeal(F,Q);
2736 }
2737 }
2738 currRing->pLexOrder=b;
2739 if (h==isHomog)
2740 {
2741 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2742 {
2743 strat->kModW = kModW = *w;
2744 if (vw == NULL)
2745 {
2746 strat->pOrigFDeg = currRing->pFDeg;
2747 strat->pOrigLDeg = currRing->pLDeg;
2749 toReset = TRUE;
2750 }
2751 }
2752 currRing->pLexOrder = TRUE;
2753 if (hilb==NULL) strat->LazyPass*=2;
2754 }
2755 strat->homog=h;
2756 #ifdef KDEBUG
2757 idTest(F);
2758 if(Q != NULL)
2759 idTest(Q);
2760 #endif
2761 #ifdef HAVE_PLURAL
2763 {
2764 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2765 strat->no_prod_crit = ! bIsSCA;
2766 if (w!=NULL)
2767 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2768 else
2769 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2770 }
2771 else
2772 #endif
2773 {
2775 {
2776 if (w!=NULL)
2777 r=mora(F,Q,*w,hilb,strat);
2778 else
2779 r=mora(F,Q,NULL,hilb,strat);
2780 }
2781 else
2782 {
2783 strat->sigdrop = FALSE;
2784 if (w!=NULL)
2785 r=sba(F,Q,*w,hilb,strat);
2786 else
2787 r=sba(F,Q,NULL,hilb,strat);
2788 }
2789 }
2790 #ifdef KDEBUG
2791 idTest(r);
2792 #endif
2793 if (toReset)
2794 {
2795 kModW = NULL;
2797 }
2798 currRing->pLexOrder = b;
2799 //Print("%d reductions canceled \n",strat->cel);
2800 //delete(strat);
2801 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2802 return r;
2803 }
2804 else
2805 {
2806 //--------------------------RING CASE-------------------------
2807 assume(sbaOrder == 1);
2808 assume(arri == 0);
2809 ideal r;
2810 r = idCopy(F);
2811 int sbaEnterS = -1;
2812 bool sigdrop = TRUE;
2813 //This is how we set the SBA algorithm;
2814 int totalsbaruns = 1,blockedreductions = 20,blockred = 0,loops = 0;
2815 while(sigdrop && (loops < totalsbaruns || totalsbaruns == -1)
2816 && (blockred <= blockedreductions))
2817 {
2818 loops++;
2819 if(loops == 1)
2820 sigdrop = FALSE;
2821 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2823 kStrategy strat=new skStrategy;
2824 strat->sbaEnterS = sbaEnterS;
2825 strat->sigdrop = sigdrop;
2826 #if 0
2827 strat->blockred = blockred;
2828 #else
2829 strat->blockred = 0;
2830 #endif
2832 //printf("\nsbaEnterS beginning = %i\n",strat->sbaEnterS);
2833 //printf("\nsigdrop beginning = %i\n",strat->sigdrop);
2834 strat->sbaOrder = sbaOrder;
2835 if (arri!=0)
2836 {
2837 strat->rewCrit1 = arriRewDummy;
2838 strat->rewCrit2 = arriRewCriterion;
2840 }
2841 else
2842 {
2846 }
2847
2849 strat->syzComp = syzComp;
2850 if (TEST_OPT_SB_1)
2852 strat->newIdeal = newIdeal;
2854 strat->LazyPass=20;
2855 else
2856 strat->LazyPass=2;
2857 strat->LazyDegree = 1;
2861 strat->ak = id_RankFreeModule(F,currRing);
2862 strat->kModW=kModW=NULL;
2863 strat->kHomW=kHomW=NULL;
2864 if (vw != NULL)
2865 {
2866 currRing->pLexOrder=FALSE;
2867 strat->kHomW=kHomW=vw;
2868 strat->pOrigFDeg = currRing->pFDeg;
2869 strat->pOrigLDeg = currRing->pLDeg;
2871 toReset = TRUE;
2872 }
2873 if (h==testHomog)
2874 {
2875 if (strat->ak == 0)
2876 {
2877 h = (tHomog)idHomIdeal(F,Q);
2878 w=NULL;
2879 }
2880 else if (!TEST_OPT_DEGBOUND)
2881 {
2882 if (w!=NULL)
2883 h = (tHomog)idHomModule(F,Q,w);
2884 else
2885 h = (tHomog)idHomIdeal(F,Q);
2886 }
2887 }
2888 currRing->pLexOrder=b;
2889 if (h==isHomog)
2890 {
2891 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2892 {
2893 strat->kModW = kModW = *w;
2894 if (vw == NULL)
2895 {
2896 strat->pOrigFDeg = currRing->pFDeg;
2897 strat->pOrigLDeg = currRing->pLDeg;
2899 toReset = TRUE;
2900 }
2901 }
2902 currRing->pLexOrder = TRUE;
2903 if (hilb==NULL) strat->LazyPass*=2;
2904 }
2905 strat->homog=h;
2906 #ifdef KDEBUG
2907 idTest(F);
2908 if(Q != NULL)
2909 idTest(Q);
2910 #endif
2911 #ifdef HAVE_PLURAL
2913 {
2914 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2915 strat->no_prod_crit = ! bIsSCA;
2916 if (w!=NULL)
2917 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2918 else
2919 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2920 }
2921 else
2922 #endif
2923 {
2925 {
2926 if (w!=NULL)
2927 r=mora(F,Q,*w,hilb,strat);
2928 else
2929 r=mora(F,Q,NULL,hilb,strat);
2930 }
2931 else
2932 {
2933 if (w!=NULL)
2934 r=sba(r,Q,*w,hilb,strat);
2935 else
2936 {
2937 r=sba(r,Q,NULL,hilb,strat);
2938 }
2939 }
2940 }
2941 #ifdef KDEBUG
2942 idTest(r);
2943 #endif
2944 if (toReset)
2945 {
2946 kModW = NULL;
2948 }
2949 currRing->pLexOrder = b;
2950 //Print("%d reductions canceled \n",strat->cel);
2951 sigdrop = strat->sigdrop;
2952 sbaEnterS = strat->sbaEnterS;
2953 blockred = strat->blockred;
2954 delete(strat);
2955 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2956 }
2957 // Go to std
2958 if(sigdrop || blockred > blockedreductions)
2959 {
2960 r = kStd(r, Q, h, w, hilb, syzComp, newIdeal, vw);
2961 }
2962 return r;
2963 }
2964}
bool sigdrop
Definition kutil.h:358
BOOLEAN(* rewCrit1)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:293
BOOLEAN(* rewCrit3)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:295
int blockred
Definition kutil.h:363
unsigned sbaOrder
Definition kutil.h:316
int blockredmax
Definition kutil.h:364
int newIdeal
Definition kutil.h:356
char z2homog
Definition kutil.h:372
char no_prod_crit
Definition kutil.h:392
void(* enterOnePair)(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.h:290
BOOLEAN(* rewCrit2)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:294
int sbaEnterS
Definition kutil.h:361
KINLINE BOOLEAN arriRewDummy(poly, unsigned long, poly, kStrategy, int)
Definition kInline.h:1255
static ideal nc_GB(const ideal F, const ideal Q, const intvec *w, const intvec *hilb, kStrategy strat, const ring r)
Definition nc.h:27
ideal mora(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd1.cc:1884
ideal sba(ideal F0, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:2967
BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int)
Definition kutil.cc:6648
BOOLEAN arriRewCriterion(poly, unsigned long, poly, kStrategy strat, int start=0)
Definition kutil.cc:6623
void enterOnePairNormal(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:1944
BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly, kStrategy strat, int start=0)
Definition kutil.cc:6564
#define TEST_OPT_SB_1
Definition options.h:119

◆ kStd()

ideal kStd ( ideal  F,
ideal  Q,
tHomog  h,
intvec **  w,
intvec hilb,
int  syzComp,
int  newIdeal,
intvec vw,
s_poly_proc_t  sp 
)

Definition at line 2471 of file kstd1.cc.

2473{
2474 if(idIs0(F))
2475 return idInit(1,F->rank);
2476
2477 if((Q!=NULL)&&(idIs0(Q))) Q=NULL;
2478#ifdef HAVE_SHIFTBBA
2479 if(rIsLPRing(currRing)) return kStdShift(F, Q, h, w, hilb, syzComp, newIdeal, vw, FALSE);
2480#endif
2481
2482 /* test HC precomputation*/
2483 poly save_noether=currRing->ppNoether;
2484 int ak = id_RankFreeModule(F,currRing);
2485 if((ak==0)
2486 && (h!=isHomog)
2487 && (w==NULL)
2488 && (hilb==NULL)
2489 && (vw==NULL)
2490 && (newIdeal==0)
2491 && (sp==NULL)
2495 currRing->ppNoether=kTryHC(F,Q);
2496
2497 ideal r;
2498 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2500 kStrategy strat=new skStrategy;
2501
2502 strat->s_poly=sp;
2504 strat->syzComp = syzComp;
2505 if (TEST_OPT_SB_1
2507 )
2508 strat->newIdeal = newIdeal;
2510 strat->LazyPass=20;
2511 else
2512 strat->LazyPass=2;
2513 strat->LazyDegree = 1;
2514 strat->ak = ak;
2515 strat->kModW=kModW=NULL;
2516 strat->kHomW=kHomW=NULL;
2517 if (vw != NULL)
2518 {
2519 currRing->pLexOrder=FALSE;
2520 strat->kHomW=kHomW=vw;
2521 strat->pOrigFDeg = currRing->pFDeg;
2522 strat->pOrigLDeg = currRing->pLDeg;
2524 toReset = TRUE;
2525 }
2526 if (h==testHomog)
2527 {
2528 if (strat->ak == 0)
2529 {
2530 h = (tHomog)idHomIdeal(F,Q);
2531 w=NULL;
2532 }
2533 else if (!TEST_OPT_DEGBOUND)
2534 {
2535 if (w!=NULL)
2536 h = (tHomog)idHomModule(F,Q,w);
2537 else
2538 h = (tHomog)idHomIdeal(F,Q);
2539 }
2540 }
2541 currRing->pLexOrder=b;
2542 if (h==isHomog)
2543 {
2544 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2545 {
2546 strat->kModW = kModW = *w;
2547 if (vw == NULL)
2548 {
2549 strat->pOrigFDeg = currRing->pFDeg;
2550 strat->pOrigLDeg = currRing->pLDeg;
2552 toReset = TRUE;
2553 }
2554 }
2555 currRing->pLexOrder = TRUE;
2556 if (hilb==NULL) strat->LazyPass*=2;
2557 }
2558 strat->homog=h;
2559#ifdef KDEBUG
2560 idTest(F);
2561 if (Q!=NULL) idTest(Q);
2562#endif
2563#ifdef HAVE_PLURAL
2565 {
2566 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2567 strat->no_prod_crit = ! bIsSCA;
2568 if (w!=NULL)
2569 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2570 else
2571 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2572 }
2573 else
2574#endif
2575 {
2576 #if PRE_INTEGER_CHECK
2577 //the preinteger check strategy is not for modules
2578 if(nCoeff_is_Z(currRing->cf) && strat->ak <= 0)
2579 {
2580 ideal FCopy = idCopy(F);
2581 poly pFmon = preIntegerCheck(FCopy, Q);
2582 if(pFmon != NULL)
2583 {
2585 strat->kModW=kModW=NULL;
2586 if (h==testHomog)
2587 {
2588 if (strat->ak == 0)
2589 {
2591 w=NULL;
2592 }
2593 else if (!TEST_OPT_DEGBOUND)
2594 {
2595 if (w!=NULL)
2597 else
2599 }
2600 }
2601 currRing->pLexOrder=b;
2602 if (h==isHomog)
2603 {
2604 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2605 {
2606 strat->kModW = kModW = *w;
2607 if (vw == NULL)
2608 {
2609 strat->pOrigFDeg = currRing->pFDeg;
2610 strat->pOrigLDeg = currRing->pLDeg;
2612 toReset = TRUE;
2613 }
2614 }
2615 currRing->pLexOrder = TRUE;
2616 if (hilb==NULL) strat->LazyPass*=2;
2617 }
2618 strat->homog=h;
2619 }
2620 omTestMemory(1);
2621 if(w == NULL)
2622 {
2624 r=mora(FCopy,Q,NULL,hilb,strat);
2625 else
2626 r=bba(FCopy,Q,NULL,hilb,strat);
2627 }
2628 else
2629 {
2631 r=mora(FCopy,Q,*w,hilb,strat);
2632 else
2633 r=bba(FCopy,Q,*w,hilb,strat);
2634 }
2635 idDelete(&FCopy);
2636 }
2637 else
2638 #endif
2639 {
2640 if(w==NULL)
2641 {
2643 r=mora(F,Q,NULL,hilb,strat);
2644 else
2645 r=bba(F,Q,NULL,hilb,strat);
2646 }
2647 else
2648 {
2650 r=mora(F,Q,*w,hilb,strat);
2651 else
2652 r=bba(F,Q,*w,hilb,strat);
2653 }
2654 }
2655 }
2656#ifdef KDEBUG
2657 idTest(r);
2658#endif
2659 if (toReset)
2660 {
2661 kModW = NULL;
2663 }
2664 currRing->pLexOrder = b;
2665//Print("%d reductions canceled \n",strat->cel);
2666 delete(strat);
2667 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2668 if (currRing->ppNoether!=save_noether) pLmDelete(&currRing->ppNoether);
2669 currRing->ppNoether=save_noether;
2670 return r;
2671}
s_poly_proc_t s_poly
Definition kutil.h:300
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition coeffs.h:809
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
ideal kStdShift(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, BOOLEAN rightGB)
Definition kstd1.cc:2967
static poly kTryHC(ideal F, ideal Q)
Definition kstd1.cc:2437
poly preIntegerCheck(const ideal Forig, const ideal Q)
used for GB over ZZ: look for constant and monomial elements in the ideal background: any known const...
Definition kutil.cc:10535
omError_t omTestMemory(int check_level)
Definition omDebug.c:94
BOOLEAN rOrd_is_ds(const ring r)
Definition ring.cc:2036
static BOOLEAN rIsLPRing(const ring r)
Definition ring.h:416
static BOOLEAN rField_is_Q(const ring r)
Definition ring.h:511

◆ kStdShift()

ideal kStdShift ( ideal  F,
ideal  Q,
tHomog  h,
intvec **  w,
intvec hilb,
int  syzComp,
int  newIdeal,
intvec vw,
BOOLEAN  rightGB 
)

Definition at line 2967 of file kstd1.cc.

2969{
2971 assume(idIsInV(F));
2972 ideal r;
2973 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2975 kStrategy strat=new skStrategy;
2976
2977 strat->rightGB = rightGB;
2978
2980 strat->syzComp = syzComp;
2981 if (TEST_OPT_SB_1)
2983 strat->newIdeal = newIdeal;
2985 strat->LazyPass=20;
2986 else
2987 strat->LazyPass=2;
2988 strat->LazyDegree = 1;
2989 strat->ak = id_RankFreeModule(F,currRing);
2990 strat->kModW=kModW=NULL;
2991 strat->kHomW=kHomW=NULL;
2992 if (vw != NULL)
2993 {
2994 currRing->pLexOrder=FALSE;
2995 strat->kHomW=kHomW=vw;
2996 strat->pOrigFDeg = currRing->pFDeg;
2997 strat->pOrigLDeg = currRing->pLDeg;
2999 toReset = TRUE;
3000 }
3001 if (h==testHomog)
3002 {
3003 if (strat->ak == 0)
3004 {
3005 h = (tHomog)idHomIdeal(F,Q);
3006 w=NULL;
3007 }
3008 else if (!TEST_OPT_DEGBOUND)
3009 {
3010 if (w!=NULL)
3011 h = (tHomog)idHomModule(F,Q,w);
3012 else
3013 h = (tHomog)idHomIdeal(F,Q);
3014 }
3015 }
3016 currRing->pLexOrder=b;
3017 if (h==isHomog)
3018 {
3019 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3020 {
3021 strat->kModW = kModW = *w;
3022 if (vw == NULL)
3023 {
3024 strat->pOrigFDeg = currRing->pFDeg;
3025 strat->pOrigLDeg = currRing->pLDeg;
3027 toReset = TRUE;
3028 }
3029 }
3030 currRing->pLexOrder = TRUE;
3031 if (hilb==NULL) strat->LazyPass*=2;
3032 }
3033 strat->homog=h;
3034#ifdef KDEBUG
3035 idTest(F);
3036#endif
3038 {
3039 /* error: no local ord yet with shifts */
3040 WerrorS("No local ordering possible for shift algebra");
3041 return(NULL);
3042 }
3043 else
3044 {
3045 /* global ordering */
3046 if (w!=NULL)
3047 r=bbaShift(F,Q,*w,hilb,strat);
3048 else
3049 r=bbaShift(F,Q,NULL,hilb,strat);
3050 }
3051#ifdef KDEBUG
3052 idTest(r);
3053#endif
3054 if (toReset)
3055 {
3056 kModW = NULL;
3058 }
3059 currRing->pLexOrder = b;
3060//Print("%d reductions canceled \n",strat->cel);
3061 delete(strat);
3062 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
3063 assume(idIsInV(r));
3064 return r;
3065}
char rightGB
Definition kutil.h:367
ideal bbaShift(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:4574
#define idIsInV(I)
Definition shiftop.h:49

◆ kTryHC()

static poly kTryHC ( ideal  F,
ideal  Q 
)
static

Definition at line 2437 of file kstd1.cc.

2438{
2439 if (TEST_OPT_PROT) PrintS("try HC in Zp ring\n");
2440 // create Zp_ring
2443 nKillChar(Zp_ring->cf);
2444 Zp_ring->cf=nInitChar(n_Zp, (void*)(long)32003);
2446 // map data
2450 ideal QQ=NULL;
2452 // call std
2454 // clean
2455 idDelete(&FF);
2456 if (QQ!=NULL) idDelete(&QQ);
2457 idDelete(&res);
2458 // map back
2460 poly p=NULL;
2461 if (Zp_ring->ppNoether!=NULL)
2462 {
2464 Zp_ring->ppNoether=NULL;
2465 if (TEST_OPT_PROT) PrintS("HC found in Zp ring\n");
2466 }
2468 return p;
2469}
@ n_Zp
\F{p < 2^31}
Definition coeffs.h:29
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition coeffs.h:701
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition numbers.cc:406
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition coeffs.h:80
void nKillChar(coeffs r)
undo all initialisations
Definition numbers.cc:556
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4151
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition ring.cc:3465
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition ring.cc:1424
void rDelete(ring r)
unconditionally deletes fields in r
Definition ring.cc:452
ideal id_PermIdeal(ideal I, int R, int C, const int *perm, const ring src, const ring dst, nMapFunc nMap, const int *par_perm, int P, BOOLEAN use_mult)
mapping ideals/matrices to other rings

◆ missingAxis()

void missingAxis ( int last,
kStrategy  strat 
)

Definition at line 1280 of file kstd1.cc.

1281{
1282 int i = 0;
1283 int k = 0;
1284
1285 *last = 0;
1287 {
1288 loop
1289 {
1290 i++;
1291 if (i > (currRing->N)) break;
1292 if (strat->NotUsedAxis[i])
1293 {
1294 *last = i;
1295 k++;
1296 }
1297 if (k>1)
1298 {
1299 *last = 0;
1300 break;
1301 }
1302 }
1303 }
1304}
int k
Definition cfEzgcd.cc:99
BOOLEAN rHasMixedOrdering(const ring r)
Definition ring.h:768
#define loop
Definition structs.h:75

◆ mora()

ideal mora ( ideal  F,
ideal  Q,
intvec w,
intvec hilb,
kStrategy  strat 
)

Definition at line 1884 of file kstd1.cc.

1885{
1886 int olddeg = 0;
1887 int reduc = 0;
1888 int red_result = 1;
1889 int hilbeledeg=1,hilbcount=0;
1890 BITSET save1;
1893 {
1894 si_opt_1 &= ~Sy_bit(OPT_REDSB);
1895 si_opt_1 &= ~Sy_bit(OPT_REDTAIL);
1896 }
1897
1898 strat->update = TRUE;
1899 /*- setting global variables ------------------- -*/
1900 initBuchMoraCrit(strat);
1901 initHilbCrit(F,Q,&hilb,strat);
1902 initMora(F,strat);
1904 initBuchMoraPosRing(strat);
1905 else
1906 initBuchMoraPos(strat);
1907 /*Shdl=*/initBuchMora(F,Q,strat);
1908 if (TEST_OPT_FASTHC) missingAxis(&strat->lastAxis,strat);
1909 /*updateS in initBuchMora has Hecketest
1910 * and could have put strat->kHEdgdeFound FALSE*/
1911 if (TEST_OPT_FASTHC && (strat->lastAxis) && strat->posInLOldFlag)
1912 {
1913 strat->posInLOld = strat->posInL;
1914 strat->posInLOldFlag = FALSE;
1915 strat->posInL = posInL10;
1916 updateL(strat);
1917 reorderL(strat);
1918 }
1919 kTest_TS(strat);
1920 strat->use_buckets = kMoraUseBucket(strat);
1921
1922#ifdef HAVE_TAIL_RING
1923 if (strat->homog && strat->red == redFirst)
1924 if(!idIs0(F) &&(!rField_is_Ring(currRing)))
1926#endif
1927
1928 if (BVERBOSE(23))
1929 {
1930 kDebugPrint(strat);
1931 }
1932//deleteInL(strat->L,&strat->Ll,1,strat);
1933//deleteInL(strat->L,&strat->Ll,0,strat);
1934
1935 /*- compute-------------------------------------------*/
1936 while (strat->Ll >= 0)
1937 {
1938 #ifdef KDEBUG
1939 if (TEST_OPT_DEBUG) messageSets(strat);
1940 #endif
1941 if (siCntrlc)
1942 {
1943 while (strat->Ll >= 0)
1944 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1945 strat->noClearS=TRUE;
1946 }
1948 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg))
1949 {
1950 /*
1951 * stops computation if
1952 * - 24 (degBound)
1953 * && upper degree is bigger than Kstd1_deg
1954 */
1955 while ((strat->Ll >= 0)
1956 && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL)
1957 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg)
1958 )
1959 {
1960 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1961 //if (TEST_OPT_PROT)
1962 //{
1963 // PrintS("D"); mflush();
1964 //}
1965 }
1966 if (strat->Ll<0) break;
1967 else strat->noClearS=TRUE;
1968 }
1969 strat->P = strat->L[strat->Ll];/*- picks the last element from the lazyset L -*/
1970 if (strat->Ll==0) strat->interpt=TRUE;
1971 strat->Ll--;
1972 // create the real Spoly
1973 if (pNext(strat->P.p) == strat->tail)
1974 {
1975 /*- deletes the short spoly and computes -*/
1977 pLmDelete(strat->P.p);
1978 else
1979 pLmFree(strat->P.p);
1980 strat->P.p = NULL;
1981 poly m1 = NULL, m2 = NULL;
1982 // check that spoly creation is ok
1983 while (strat->tailRing != currRing &&
1984 !kCheckSpolyCreation(&(strat->P), strat, m1, m2))
1985 {
1986 assume(m1 == NULL && m2 == NULL);
1987 // if not, change to a ring where exponents are large enough
1988 kStratChangeTailRing(strat);
1989 }
1990 /* create the real one */
1991 ksCreateSpoly(&(strat->P), strat->kNoetherTail(), strat->use_buckets,
1992 strat->tailRing, m1, m2, strat->R);
1993 if (!strat->use_buckets)
1994 strat->P.SetLength(strat->length_pLength);
1995 }
1996 else if (strat->P.p1 == NULL)
1997 {
1998 // for input polys, prepare reduction (buckets !)
1999 strat->P.SetLength(strat->length_pLength);
2000 strat->P.PrepareRed(strat->use_buckets);
2001 }
2002
2003 // the s-poly
2004 if (!strat->P.IsNull())
2005 {
2006 // might be NULL from noether !!!
2007 if (TEST_OPT_PROT)
2008 message(strat->P.ecart+strat->P.GetpFDeg(),&olddeg,&reduc,strat, red_result);
2009 // reduce
2010 red_result = strat->red(&strat->P,strat);
2011 }
2012
2013 // the reduced s-poly
2014 if (! strat->P.IsNull())
2015 {
2016 strat->P.GetP();
2017 // statistics
2018 if (TEST_OPT_PROT) PrintS("s");
2019 // normalization
2021 strat->P.pCleardenom();
2022 else
2023 strat->P.pNorm();
2024 // tailreduction
2025 strat->P.p = redtail(&(strat->P),strat->sl,strat);
2026 if (strat->P.p==NULL)
2027 {
2028 WerrorS("exponent overflow - wrong ordering");
2029 return(idInit(1,1));
2030 }
2031 // set ecart -- might have changed because of tail reductions
2032 if ((!strat->noTailReduction) && (!strat->honey))
2033 strat->initEcart(&strat->P);
2034 // cancel unit
2035 cancelunit(&strat->P);
2036 // for char 0, clear denominators
2037 if ((strat->P.p->next==NULL) /* i.e. cancelunit did something*/
2039 strat->P.pCleardenom();
2040
2041 strat->P.SetShortExpVector();
2042 enterT(strat->P,strat);
2043 // build new pairs
2045 superenterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2046 else
2047 enterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2048 // put in S
2049 strat->enterS(strat->P,
2050 posInS(strat,strat->sl,strat->P.p, strat->P.ecart),
2051 strat, strat->tl);
2052 // apply hilbert criterion
2053 if (hilb!=NULL)
2054 {
2055 if (strat->homog==isHomog)
2057 else
2059 }
2060
2061 // clear strat->P
2062 kDeleteLcm(&strat->P);
2063
2064#ifdef KDEBUG
2065 // make sure kTest_TS does not complain about strat->P
2066 strat->P.Clear();
2067#endif
2068 }
2069 if (strat->kAllAxis)
2070 {
2071 if ((TEST_OPT_FINDET)
2072 || ((TEST_OPT_MULTBOUND) && (scMult0Int(strat->Shdl,NULL) < Kstd1_mu)))
2073 {
2074 // obachman: is this still used ???
2075 /*
2076 * stops computation if strat->kAllAxis and
2077 * - 27 (finiteDeterminacyTest)
2078 * or
2079 * - 23
2080 * (multBound)
2081 * && multiplicity of the ideal is smaller then a predefined number mu
2082 */
2083 while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
2084 }
2085 }
2086 kTest_TS(strat);
2087 }
2088 /*- complete reduction of the standard basis------------------------ -*/
2089 if (TEST_OPT_REDSB) completeReduce(strat);
2090 else if (TEST_OPT_PROT) PrintLn();
2091 /*- release temp data------------------------------- -*/
2092 exitBuchMora(strat);
2093 /*- polynomials used for HECKE: HC, noether -*/
2094 if (TEST_OPT_FINDET)
2095 {
2096 if (strat->kNoether!=NULL)
2097 Kstd1_mu=currRing->pFDeg(strat->kNoether,currRing);
2098 else
2099 Kstd1_mu=-1;
2100 }
2101 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2102 if (strat->kNoether!=NULL) pLmDelete(&strat->kNoether);
2103 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2105// if (TEST_OPT_WEIGHTM)
2106// {
2107// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2108// if (ecartWeights)
2109// {
2110// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
2111// ecartWeights=NULL;
2112// }
2113// }
2114 if(nCoeff_is_Z(currRing->cf))
2115 finalReduceByMon(strat);
2116 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
2118 idTest(strat->Shdl);
2119 return (strat->Shdl);
2120}
char noClearS
Definition kutil.h:400
long scMult0Int(ideal S, ideal Q)
Definition hdegree.cc:924
void khCheckLocInhom(ideal Q, intvec *w, intvec *hilb, int &count, kStrategy strat)
Definition khstd.cc:244
void khCheck(ideal Q, intvec *w, intvec *hilb, int &eledeg, int &count, kStrategy strat)
Definition khstd.cc:28
void ksCreateSpoly(LObject *Pair, poly spNoether, int use_buckets, ring tailRing, poly m1, poly m2, TObject **R)
Definition kspoly.cc:1204
EXTERN_VAR int Kstd1_mu
Definition kstd1.h:50
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4492
void initHilbCrit(ideal, ideal, intvec **hilb, kStrategy strat)
Definition kutil.cc:9414
BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject *T, unsigned long expbound)
Definition kutil.cc:10957
BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
Definition kutil.cc:10476
void superenterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4462
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition kutil.cc:1213
void messageStat(int hilbcount, kStrategy strat)
Definition kutil.cc:7506
void finalReduceByMon(kStrategy strat)
used for GB over ZZ: final reduction by constant elements background: any known constant element of i...
Definition kutil.cc:10865
void cancelunit(LObject *L, BOOLEAN inNF)
Definition kutil.cc:370
VAR BOOLEAN siCntrlc
Definition options.c:14
#define OPT_REDSB
Definition options.h:76
#define TEST_OPT_MULTBOUND
Definition options.h:114

◆ posInL10()

int posInL10 ( const LSet  set,
const int  length,
LObject p,
const kStrategy  strat 
)

Definition at line 1361 of file kstd1.cc.

1362{
1363 int j,dp,dL;
1364
1365 if (length<0) return 0;
1366 if (hasPurePower(p,strat->lastAxis,&dp,strat))
1367 {
1368 int op= p->GetpFDeg() +p->ecart;
1369 for (j=length; j>=0; j--)
1370 {
1371 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat))
1372 return j+1;
1373 if (dp < dL)
1374 return j+1;
1375 if ((dp == dL)
1376 && (set[j].GetpFDeg()+set[j].ecart >= op))
1377 return j+1;
1378 }
1379 }
1380 j=length;
1381 loop
1382 {
1383 if (j<0) break;
1384 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat)) break;
1385 j--;
1386 }
1387 return strat->posInLOld(set,j,p,strat);
1388}

◆ redEcart()

int redEcart ( LObject h,
kStrategy  strat 
)

Definition at line 169 of file kstd1.cc.

170{
171 int i,at,ei,li,ii;
172 int j = 0;
173 int pass = 0;
174 long d,reddeg;
175
176 d = h->GetpFDeg()+ h->ecart;
177 reddeg = strat->LazyDegree+d;
178 h->SetShortExpVector();
179 loop
180 {
181 j = kFindDivisibleByInT(strat, h);
182 if (j < 0)
183 {
184 if (strat->honey) h->SetLength(strat->length_pLength);
185 return 1;
186 }
187
188 ei = strat->T[j].ecart;
189 ii = j;
190
191 if (ei > h->ecart && ii < strat->tl)
192 {
193 unsigned long not_sev=~h->sev;
194 poly h_t= h->GetLmTailRing();
195 li = strat->T[j].length;
196 if (li<=0) li=strat->T[j].GetpLength();
197 // the polynomial to reduce with (up to the moment) is;
198 // pi with ecart ei and length li
199 // look for one with smaller ecart
200 i = j;
201 loop
202 {
203 /*- takes the first possible with respect to ecart -*/
204 i++;
205#if 1
206 if (i > strat->tl) break;
207 if (strat->T[i].length<=0) strat->T[i].GetpLength();
208 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
209 strat->T[i].length < li))
210 &&
211 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h_t, not_sev, strat->tailRing))
212#else
213 j = kFindDivisibleByInT(strat, h, i);
214 if (j < 0) break;
215 i = j;
216 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
217 strat->T[i].length < li))
218#endif
219 {
220 // the polynomial to reduce with is now
221 ii = i;
222 ei = strat->T[i].ecart;
223 if (ei <= h->ecart) break;
224 li = strat->T[i].length;
225 }
226 }
227 }
228
229 // end of search: have to reduce with pi
230 if (ei > h->ecart)
231 {
232 // It is not possible to reduce h with smaller ecart;
233 // if possible h goes to the lazy-set L,i.e
234 // if its position in L would be not the last one
235 strat->fromT = TRUE;
236 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
237 {
238 h->SetLmCurrRing();
239 if (strat->honey && strat->posInLDependsOnLength)
240 h->SetLength(strat->length_pLength);
241 assume(h->FDeg == h->pFDeg());
242 at = strat->posInL(strat->L,strat->Ll,h,strat);
243 if (at <= strat->Ll)
244 {
245 /*- h will not become the next element to reduce -*/
246 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
247#ifdef KDEBUG
248 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
249#endif
250 h->Clear();
251 strat->fromT = FALSE;
252 return -1;
253 }
254 }
255 }
256
257 // now we finally can reduce
258 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
259 strat->fromT=FALSE;
260
261 // are we done ???
262 if (h->IsNull())
263 {
265 kDeleteLcm(h);
266 h->Clear();
267 return 0;
268 }
269 if (TEST_OPT_IDLIFT)
270 {
271 if (h->p!=NULL)
272 {
273 if(p_GetComp(h->p,currRing)>strat->syzComp)
274 {
275 h->Delete();
276 return 0;
277 }
278 }
279 else if (h->t_p!=NULL)
280 {
281 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
282 {
283 h->Delete();
284 return 0;
285 }
286 }
287 }
288 #if 0
289 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
290 {
291 if (h->p!=NULL)
292 {
293 if(p_GetComp(h->p,currRing)>strat->syzComp)
294 {
295 return 1;
296 }
297 }
298 else if (h->t_p!=NULL)
299 {
300 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
301 {
302 return 1;
303 }
304 }
305 }
306 #endif
307
308 // done ? NO!
309 h->SetShortExpVector();
310 h->SetpFDeg();
311 if (strat->honey)
312 {
313 if (ei <= h->ecart)
314 h->ecart = d-h->GetpFDeg();
315 else
316 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
317 }
318 else
319 // this has the side effect of setting h->length
320 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
321#if 0
322 if (strat->syzComp!=0)
323 {
324 if ((strat->syzComp>0) && (h->Comp() > strat->syzComp))
325 {
326 assume(h->MinComp() > strat->syzComp);
327 if (strat->honey) h->SetLength();
328#ifdef KDEBUG
329 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
330#endif
331 return -2;
332 }
333 }
334#endif
335 /*- try to reduce the s-polynomial -*/
336 pass++;
337 d = h->GetpFDeg()+h->ecart;
338 /*
339 *test whether the polynomial should go to the lazyset L
340 *-if the degree jumps
341 *-if the number of pre-defined reductions jumps
342 */
343 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
344 && ((d >= reddeg) || (pass > strat->LazyPass)))
345 {
346 h->SetLmCurrRing();
347 if (strat->honey && strat->posInLDependsOnLength)
348 h->SetLength(strat->length_pLength);
349 assume(h->FDeg == h->pFDeg());
350 at = strat->posInL(strat->L,strat->Ll,h,strat);
351 if (at <= strat->Ll)
352 {
353 int dummy=strat->sl;
354 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
355 {
356 if (strat->honey && !strat->posInLDependsOnLength)
357 h->SetLength(strat->length_pLength);
358 return 1;
359 }
360 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
361#ifdef KDEBUG
362 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
363#endif
364 h->Clear();
365 return -1;
366 }
367 }
368 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
369 {
370 Print(".%ld",d);mflush();
371 reddeg = d+1;
372 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
373 {
374 strat->overflow=TRUE;
375 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
376 h->GetP();
377 at = strat->posInL(strat->L,strat->Ll,h,strat);
378 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
379 h->Clear();
380 return -1;
381 }
382 }
383 }
384}
int length() const
char fromT
Definition kutil.h:377
char overflow
Definition kutil.h:402
static int doRed(LObject *h, TObject *with, BOOLEAN intoT, kStrategy strat, bool redMoraNF)
Definition kstd1.cc:119
int kFindDivisibleByInS(const kStrategy strat, int *max_ind, LObject *L)
return -1 if no divisor is found number of first divisor in S, otherwise
Definition kstd2.cc:421
int kFindDivisibleByInT(const kStrategy strat, const LObject *L, const int start)
return -1 if no divisor is found number of first divisor in T, otherwise
Definition kstd2.cc:321
#define p_GetComp(p, r)
Definition monomials.h:64
#define TEST_OPT_REDTHROUGH
Definition options.h:122
#define TEST_OPT_REDTAIL_SYZ
Definition options.h:117
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition p_polys.h:1924

◆ redFirst()

int redFirst ( LObject h,
kStrategy  strat 
)

Definition at line 795 of file kstd1.cc.

796{
797 if (strat->tl<0) return 1;
798 if (h->IsNull()) return 0;
799
800 int at;
801 long reddeg,d;
802 int pass = 0;
803 int cnt = RED_CANONICALIZE;
804 int j = 0;
805
806 if (! strat->homog)
807 {
808 d = h->GetpFDeg() + h->ecart;
809 reddeg = strat->LazyDegree+d;
810 }
811 h->SetShortExpVector();
812 loop
813 {
814 j = kFindDivisibleByInT(strat, h);
815 if (j < 0)
816 {
817 h->SetDegStuffReturnLDeg(strat->LDegLast);
818 return 1;
819 }
820
822 strat->T[j].pNorm();
823#ifdef KDEBUG
824 if (TEST_OPT_DEBUG)
825 {
826 PrintS("reduce ");
827 h->wrp();
828 PrintS(" with ");
829 strat->T[j].wrp();
830 }
831#endif
832 ksReducePoly(h, &(strat->T[j]), strat->kNoetherTail(), NULL, NULL, strat);
833#ifdef KDEBUG
834 if (TEST_OPT_DEBUG)
835 {
836 PrintS(" to ");
837 wrp(h->p);
838 PrintLn();
839 }
840#endif
841 if (h->IsNull())
842 {
844 kDeleteLcm(h);
845 h->Clear();
846 return 0;
847 }
848 if (TEST_OPT_IDLIFT)
849 {
850 if (h->p!=NULL)
851 {
852 if(p_GetComp(h->p,currRing)>strat->syzComp)
853 {
854 h->Delete();
855 return 0;
856 }
857 }
858 else if (h->t_p!=NULL)
859 {
860 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
861 {
862 h->Delete();
863 return 0;
864 }
865 }
866 }
867 #if 0
868 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
869 {
870 if (h->p!=NULL)
871 {
872 if(p_GetComp(h->p,currRing)>strat->syzComp)
873 {
874 return 1;
875 }
876 }
877 else if (h->t_p!=NULL)
878 {
879 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
880 {
881 return 1;
882 }
883 }
884 }
885 #endif
886 h->SetShortExpVector();
887
888#if 0
889 if ((strat->syzComp!=0) && !strat->honey)
890 {
891 if ((strat->syzComp>0) &&
892 (h->Comp() > strat->syzComp))
893 {
894 assume(h->MinComp() > strat->syzComp);
895#ifdef KDEBUG
896 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
897#endif
898 if (strat->homog)
899 h->SetDegStuffReturnLDeg(strat->LDegLast);
900 return -2;
901 }
902 }
903#endif
904 if (!strat->homog)
905 {
906 if (!TEST_OPT_OLDSTD && strat->honey)
907 {
908 h->SetpFDeg();
909 if (strat->T[j].ecart <= h->ecart)
910 h->ecart = d - h->GetpFDeg();
911 else
912 h->ecart = d - h->GetpFDeg() + strat->T[j].ecart - h->ecart;
913
914 d = h->GetpFDeg() + h->ecart;
915 }
916 else
917 d = h->SetDegStuffReturnLDeg(strat->LDegLast);
918 /*- try to reduce the s-polynomial -*/
919 cnt--;
920 pass++;
921 /*
922 *test whether the polynomial should go to the lazyset L
923 *-if the degree jumps
924 *-if the number of pre-defined reductions jumps
925 */
926 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
927 && ((d >= reddeg) || (pass > strat->LazyPass)))
928 {
929 h->SetLmCurrRing();
930 if (strat->posInLDependsOnLength)
931 h->SetLength(strat->length_pLength);
932 at = strat->posInL(strat->L,strat->Ll,h,strat);
933 if (at <= strat->Ll)
934 {
935 int dummy=strat->sl;
936 if (kFindDivisibleByInS(strat,&dummy, h) < 0)
937 return 1;
938 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
939#ifdef KDEBUG
940 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
941#endif
942 h->Clear();
943 return -1;
944 }
945 }
946 if (UNLIKELY(cnt==0))
947 {
948 h->CanonicalizeP();
950 //if (TEST_OPT_PROT) { PrintS("!");mflush(); }
951 }
952 if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
953 {
954 reddeg = d+1;
955 Print(".%ld",d);mflush();
956 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
957 {
958 strat->overflow=TRUE;
959 //Print("OVERFLOW in redFirst d=%ld, max=%ld",d,strat->tailRing->bitmask);
960 h->GetP();
961 at = strat->posInL(strat->L,strat->Ll,h,strat);
962 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
963 h->Clear();
964 return -1;
965 }
966 }
967 }
968 }
969}
#define UNLIKELY(X)
Definition auxiliary.h:404
#define RED_CANONICALIZE
Definition kutil.h:36
void wrp(poly p)
Definition polys.h:310

◆ redMoraNF()

static poly redMoraNF ( poly  h,
kStrategy  strat,
int  flag 
)
static

Definition at line 976 of file kstd1.cc.

977{
978 LObject H;
979 H.p = h;
980 int j = 0;
981 int z = 10;
982 int o = H.SetpFDeg();
983 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
984 if ((flag & 2) == 0) cancelunit(&H,TRUE);
985 H.sev = pGetShortExpVector(H.p);
986 loop
987 {
988 if (j > strat->tl)
989 {
990 return H.p;
991 }
992 if (TEST_V_DEG_STOP)
993 {
994 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
995 if (H.p==NULL) return NULL;
996 }
997 unsigned long not_sev = ~ H.sev;
998 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
999 )
1000 {
1001 /*- remember the found T-poly -*/
1002 // poly pi = strat->T[j].p;
1003 int ei = strat->T[j].ecart;
1004 int li = strat->T[j].length;
1005 int ii = j;
1006 /*
1007 * the polynomial to reduce with (up to the moment) is;
1008 * pi with ecart ei and length li
1009 */
1010 loop
1011 {
1012 /*- look for a better one with respect to ecart -*/
1013 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1014 j++;
1015 if (j > strat->tl) break;
1016 if (ei <= H.ecart) break;
1017 if (((strat->T[j].ecart < ei)
1018 || ((strat->T[j].ecart == ei)
1019 && (strat->T[j].length < li)))
1020 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1021 )
1022 {
1023 /*
1024 * the polynomial to reduce with is now;
1025 */
1026 // pi = strat->T[j].p;
1027 ei = strat->T[j].ecart;
1028 li = strat->T[j].length;
1029 ii = j;
1030 }
1031 }
1032 /*
1033 * end of search: have to reduce with pi
1034 */
1035 z++;
1036 if (z>10)
1037 {
1038 pNormalize(H.p);
1039 z=0;
1040 }
1041 if ((ei > H.ecart) && (strat->kNoether==NULL))
1042 {
1043 /*
1044 * It is not possible to reduce h with smaller ecart;
1045 * we have to reduce with bad ecart: H has to enter in T
1046 */
1047 LObject L= H;
1048 L.Copy();
1049 H.GetP();
1050 H.length=H.pLength=pLength(H.p);
1051 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1052 (flag & KSTD_NF_NONORM)==0);
1053 enterT(H,strat);
1054 H = L;
1055 }
1056 else
1057 {
1058 /*
1059 * we reduce with good ecart, h need not to be put to T
1060 */
1061 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1062 (flag & KSTD_NF_NONORM)==0);
1063 }
1064 if (H.p == NULL)
1065 return NULL;
1066 /*- try to reduce the s-polynomial -*/
1067 o = H.SetpFDeg();
1068 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1069 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1070 j = 0;
1071 H.sev = pGetShortExpVector(H.p);
1072 }
1073 else
1074 {
1075 j++;
1076 }
1077 }
1078}
CanonicalForm H
Definition facAbsFact.cc:60
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition polys.h:146
#define pNormalize(p)
Definition polys.h:317

◆ redMoraNFRing()

static poly redMoraNFRing ( poly  h,
kStrategy  strat,
int  flag 
)
static

Definition at line 1080 of file kstd1.cc.

1081{
1082 LObject H;
1083 H.p = h;
1084 int j0, j = 0;
1085 int docoeffred = 0;
1086 poly T0p = strat->T[0].p;
1087 int T0ecart = strat->T[0].ecart;
1088 int o = H.SetpFDeg();
1089 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
1090 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1091 H.sev = pGetShortExpVector(H.p);
1092 unsigned long not_sev = ~ H.sev;
1093 if (strat->T[0].GetpFDeg() == 0 && strat->T[0].length <= 2)
1094 {
1095 docoeffred = 1; // euclidean ring required: n_QuotRem
1096 if (currRing->cf->cfQuotRem==ndQuotRem)
1097 {
1098 docoeffred = 0;
1099 }
1100 }
1101 loop
1102 {
1103 /* cut down the lead coefficients, only possible if the degree of
1104 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
1105 * we ask for the length of T[0] to be <= 2 */
1106 if (docoeffred)
1107 {
1108 j0 = kTestDivisibleByT0_Z(strat, &H);
1109 if ((j0 == 0)
1110 && (n_DivBy(pGetCoeff(H.p), pGetCoeff(T0p), currRing->cf) == FALSE)
1111 && (T0ecart <= H.ecart))
1112 {
1113 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
1114 * => we try to cut down the lead coefficient at least */
1115 /* first copy T[j0] in order to multiply it with a coefficient later on */
1116 number mult, rest;
1117 TObject tj = strat->T[0];
1118 tj.Copy();
1119 /* compute division with remainder of lc(h) and lc(T[j]) */
1121 &rest, currRing->cf);
1122 /* set corresponding new lead coefficient already. we do not
1123 * remove the lead term in ksReducePolyLC, but only apply
1124 * a lead coefficient reduction */
1125 tj.Mult_nn(mult);
1126 ksReducePolyLC(&H, &tj, NULL, &rest, strat);
1127 tj.Delete();
1128 tj.Clear();
1129 }
1130 }
1131 if (j > strat->tl)
1132 {
1133 return H.p;
1134 }
1135 if (TEST_V_DEG_STOP)
1136 {
1137 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
1138 if (H.p==NULL) return NULL;
1139 }
1140 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1141 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1142 )
1143 {
1144 /*- remember the found T-poly -*/
1145 // poly pi = strat->T[j].p;
1146 int ei = strat->T[j].ecart;
1147 int li = strat->T[j].length;
1148 int ii = j;
1149 /*
1150 * the polynomial to reduce with (up to the moment) is;
1151 * pi with ecart ei and length li
1152 */
1153 loop
1154 {
1155 /*- look for a better one with respect to ecart -*/
1156 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1157 j++;
1158 if (j > strat->tl) break;
1159 if (ei <= H.ecart) break;
1160 if (((strat->T[j].ecart < ei)
1161 || ((strat->T[j].ecart == ei)
1162 && (strat->T[j].length < li)))
1163 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1164 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1165 )
1166 {
1167 /*
1168 * the polynomial to reduce with is now;
1169 */
1170 // pi = strat->T[j].p;
1171 ei = strat->T[j].ecart;
1172 li = strat->T[j].length;
1173 ii = j;
1174 }
1175 }
1176 /*
1177 * end of search: have to reduce with pi
1178 */
1179 if ((ei > H.ecart) && (strat->kNoether==NULL))
1180 {
1181 /*
1182 * It is not possible to reduce h with smaller ecart;
1183 * we have to reduce with bad ecart: H has to enter in T
1184 */
1185 LObject L= H;
1186 L.Copy();
1187 H.GetP();
1188 H.length=H.pLength=pLength(H.p);
1189 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1190 (flag & KSTD_NF_NONORM)==0);
1191 enterT_strong(H,strat);
1192 H = L;
1193 }
1194 else
1195 {
1196 /*
1197 * we reduce with good ecart, h need not to be put to T
1198 */
1199 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1200 (flag & KSTD_NF_NONORM)==0);
1201 }
1202 if (H.p == NULL)
1203 return NULL;
1204 /*- try to reduce the s-polynomial -*/
1205 o = H.SetpFDeg();
1206 if ((flag &2 ) == 0) cancelunit(&H,TRUE);
1207 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1208 j = 0;
1209 H.sev = pGetShortExpVector(H.p);
1210 not_sev = ~ H.sev;
1211 }
1212 else
1213 {
1214 j++;
1215 }
1216 }
1217}
static FORCE_INLINE number n_QuotRem(number a, number b, number *q, const coeffs r)
Definition coeffs.h:682
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition coeffs.h:748
int ksReducePolyLC(LObject *PR, TObject *PW, poly spNoether, number *coef, kStrategy strat)
Definition kspoly.cc:477
int kTestDivisibleByT0_Z(const kStrategy strat, const LObject *L)
tests if T[0] divides the leading monomial of L, returns -1 if not
Definition kstd2.cc:146
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition minpoly.cc:647
number ndQuotRem(number a, number b, number *r, const coeffs R)
Definition numbers.cc:350

◆ redRiloc()

int redRiloc ( LObject h,
kStrategy  strat 
)

Definition at line 386 of file kstd1.cc.

387{
388 int i,at,ei,li,ii;
389 int j = 0;
390 int pass = 0;
391 long d,reddeg;
392
393 d = h->GetpFDeg()+ h->ecart;
394 reddeg = strat->LazyDegree+d;
395 h->SetShortExpVector();
396 loop
397 {
398 j = kFindDivisibleByInT(strat, h);
399 if (j < 0)
400 {
401 // over ZZ: cleanup coefficients by complete reduction with monomials
402 postReduceByMon(h, strat);
403 if(h->p == NULL)
404 {
405 kDeleteLcm(h);
406 h->Clear();
407 return 0;
408 }
409 if (strat->honey) h->SetLength(strat->length_pLength);
410 if(strat->tl >= 0)
411 h->i_r1 = strat->tl;
412 else
413 h->i_r1 = -1;
414 if (h->GetLmTailRing() == NULL)
415 {
416 kDeleteLcm(h);
417 h->Clear();
418 return 0;
419 }
420 return 1;
421 }
422
423 ei = strat->T[j].ecart;
424 ii = j;
425 if (ei > h->ecart && ii < strat->tl)
426 {
427 li = strat->T[j].length;
428 // the polynomial to reduce with (up to the moment) is;
429 // pi with ecart ei and length li
430 // look for one with smaller ecart
431 i = j;
432 loop
433 {
434 /*- takes the first possible with respect to ecart -*/
435 i++;
436#if 1
437 if (i > strat->tl) break;
438 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
439 strat->T[i].length < li))
440 &&
441 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
442 &&
443 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
444#else
445 j = kFindDivisibleByInT(strat, h, i);
446 if (j < 0) break;
447 i = j;
448 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
449 strat->T[i].length < li))
450#endif
451 {
452 // the polynomial to reduce with is now
453 ii = i;
454 ei = strat->T[i].ecart;
455 if (ei <= h->ecart) break;
456 li = strat->T[i].length;
457 }
458 }
459 }
460
461 // end of search: have to reduce with pi
462 if (ei > h->ecart)
463 {
464 // It is not possible to reduce h with smaller ecart;
465 // if possible h goes to the lazy-set L,i.e
466 // if its position in L would be not the last one
467 strat->fromT = TRUE;
468 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
469 {
470 h->SetLmCurrRing();
471 if (strat->honey && strat->posInLDependsOnLength)
472 h->SetLength(strat->length_pLength);
473 assume(h->FDeg == h->pFDeg());
474 at = strat->posInL(strat->L,strat->Ll,h,strat);
475 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
476 {
477 /*- h will not become the next element to reduce -*/
478 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
479 #ifdef KDEBUG
480 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
481 #endif
482 h->Clear();
483 strat->fromT = FALSE;
484 return -1;
485 }
486 }
487 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
488 }
489 else
490 {
491 // now we finally can reduce
492 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
493 }
494 strat->fromT=FALSE;
495 // are we done ???
496 if (h->IsNull())
497 {
498 kDeleteLcm(h);
499 h->Clear();
500 return 0;
501 }
502
503 // NO!
504 h->SetShortExpVector();
505 h->SetpFDeg();
506 if (strat->honey)
507 {
508 if (ei <= h->ecart)
509 h->ecart = d-h->GetpFDeg();
510 else
511 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
512 }
513 else
514 // this has the side effect of setting h->length
515 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
516 /*- try to reduce the s-polynomial -*/
517 pass++;
518 d = h->GetpFDeg()+h->ecart;
519 /*
520 *test whether the polynomial should go to the lazyset L
521 *-if the degree jumps
522 *-if the number of pre-defined reductions jumps
523 */
524 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
525 && ((d >= reddeg) || (pass > strat->LazyPass)))
526 {
527 h->SetLmCurrRing();
528 if (strat->honey && strat->posInLDependsOnLength)
529 h->SetLength(strat->length_pLength);
530 assume(h->FDeg == h->pFDeg());
531 at = strat->posInL(strat->L,strat->Ll,h,strat);
532 if (at <= strat->Ll)
533 {
534 int dummy=strat->sl;
535 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
536 {
537 if (strat->honey && !strat->posInLDependsOnLength)
538 h->SetLength(strat->length_pLength);
539 return 1;
540 }
541 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
542#ifdef KDEBUG
543 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
544#endif
545 h->Clear();
546 return -1;
547 }
548 }
549 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
550 {
551 Print(".%ld",d);mflush();
552 reddeg = d+1;
553 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
554 {
555 strat->overflow=TRUE;
556 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
557 h->GetP();
558 at = strat->posInL(strat->L,strat->Ll,h,strat);
559 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
560 h->Clear();
561 return -1;
562 }
563 }
564 }
565}
void postReduceByMon(LObject *h, kStrategy strat)
used for GB over ZZ: intermediate reduction by monomial elements background: any known constant eleme...
Definition kutil.cc:10700
#define nEqual(n1, n2)
Definition numbers.h:20
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition polys.h:105

◆ redRiloc_Z()

int redRiloc_Z ( LObject h,
kStrategy  strat 
)

Definition at line 567 of file kstd1.cc.

568{
569 int i,at,ei,li,ii;
570 int j = 0;
571 int pass = 0;
572 long d,reddeg;
573 int docoeffred = 0;
574 poly T0p = strat->T[0].p;
575 int T0ecart = strat->T[0].ecart;
576
577
578 d = h->GetpFDeg()+ h->ecart;
579 reddeg = strat->LazyDegree+d;
580 h->SetShortExpVector();
581 if ((strat->tl>=0)
582 &&strat->T[0].GetpFDeg() == 0
583 && strat->T[0].length <= 2)
584 {
585 docoeffred = 1;
586 }
587 loop
588 {
589 /* cut down the lead coefficients, only possible if the degree of
590 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
591 * we ask for the length of T[0] to be <= 2 */
592 if (docoeffred)
593 {
594 j = kTestDivisibleByT0_Z(strat, h);
595 if (j == 0 && n_DivBy(pGetCoeff(h->p), pGetCoeff(T0p), currRing->cf) == FALSE
596 && T0ecart <= h->ecart)
597 {
598 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
599 * => we try to cut down the lead coefficient at least */
600 /* first copy T[j] in order to multiply it with a coefficient later on */
602 TObject tj = strat->T[0];
603 tj.Copy();
604 /* compute division with remainder of lc(h) and lc(T[j]) */
606 &rest, currRing->cf);
607 /* set corresponding new lead coefficient already. we do not
608 * remove the lead term in ksReducePolyLC, but only apply
609 * a lead coefficient reduction */
610 tj.Mult_nn(mult);
611 ksReducePolyLC(h, &tj, NULL, &rest, strat);
612 tj.Delete();
613 tj.Clear();
614 if (n_IsZero(pGetCoeff(h->GetP()),currRing->cf))
615 {
616 h->LmDeleteAndIter();
617 }
618 }
619 }
620 j = kFindDivisibleByInT(strat, h);
621 if (j < 0)
622 {
623 // over ZZ: cleanup coefficients by complete reduction with monomials
624 postReduceByMon(h, strat);
625 if(h->p == NULL)
626 {
627 kDeleteLcm(h);
628 h->Clear();
629 return 0;
630 }
631 if (strat->honey) h->SetLength(strat->length_pLength);
632 if(strat->tl >= 0)
633 h->i_r1 = strat->tl;
634 else
635 h->i_r1 = -1;
636 if (h->GetLmTailRing() == NULL)
637 {
638 kDeleteLcm(h);
639 h->Clear();
640 return 0;
641 }
642 return 1;
643 }
644
645 ei = strat->T[j].ecart;
646 ii = j;
647#if 1
648 if (ei > h->ecart && ii < strat->tl)
649 {
650 li = strat->T[j].length;
651 // the polynomial to reduce with (up to the moment) is;
652 // pi with ecart ei and length li
653 // look for one with smaller ecart
654 i = j;
655 loop
656 {
657 /*- takes the first possible with respect to ecart -*/
658 i++;
659#if 1
660 if (i > strat->tl) break;
661 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
662 strat->T[i].length < li))
663 &&
664 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
665 &&
666 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
667#else
668 j = kFindDivisibleByInT(strat, h, i);
669 if (j < 0) break;
670 i = j;
671 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
672 strat->T[i].length < li))
673#endif
674 {
675 // the polynomial to reduce with is now
676 ii = i;
677 ei = strat->T[i].ecart;
678 if (ei <= h->ecart) break;
679 li = strat->T[i].length;
680 }
681 }
682 }
683#endif
684
685 // end of search: have to reduce with pi
686 if (ei > h->ecart)
687 {
688 // It is not possible to reduce h with smaller ecart;
689 // if possible h goes to the lazy-set L,i.e
690 // if its position in L would be not the last one
691 strat->fromT = TRUE;
692 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
693 {
694 h->SetLmCurrRing();
695 if (strat->honey && strat->posInLDependsOnLength)
696 h->SetLength(strat->length_pLength);
697 assume(h->FDeg == h->pFDeg());
698 at = strat->posInL(strat->L,strat->Ll,h,strat);
699 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
700 {
701 /*- h will not become the next element to reduce -*/
702 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
703#ifdef KDEBUG
704 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
705#endif
706 h->Clear();
707 strat->fromT = FALSE;
708 return -1;
709 }
710 }
711 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
712 }
713 else
714 {
715 // now we finally can reduce
716 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
717 }
718 strat->fromT=FALSE;
719 // are we done ???
720 if (h->IsNull())
721 {
722 kDeleteLcm(h);
723 h->Clear();
724 return 0;
725 }
726
727 // NO!
728 h->SetShortExpVector();
729 h->SetpFDeg();
730 if (strat->honey)
731 {
732 if (ei <= h->ecart)
733 h->ecart = d-h->GetpFDeg();
734 else
735 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
736 }
737 else
738 // this has the side effect of setting h->length
739 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
740 /*- try to reduce the s-polynomial -*/
741 pass++;
742 d = h->GetpFDeg()+h->ecart;
743 /*
744 *test whether the polynomial should go to the lazyset L
745 *-if the degree jumps
746 *-if the number of pre-defined reductions jumps
747 */
748 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
749 && ((d >= reddeg) || (pass > strat->LazyPass)))
750 {
751 h->SetLmCurrRing();
752 if (strat->honey && strat->posInLDependsOnLength)
753 h->SetLength(strat->length_pLength);
754 assume(h->FDeg == h->pFDeg());
755 at = strat->posInL(strat->L,strat->Ll,h,strat);
756 if (at <= strat->Ll)
757 {
758 int dummy=strat->sl;
759 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
760 {
761 if (strat->honey && !strat->posInLDependsOnLength)
762 h->SetLength(strat->length_pLength);
763 return 1;
764 }
765 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
766#ifdef KDEBUG
767 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
768#endif
769 h->Clear();
770 return -1;
771 }
772 }
773 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
774 {
775 Print(".%ld",d);mflush();
776 reddeg = d+1;
777 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
778 {
779 strat->overflow=TRUE;
780 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
781 h->GetP();
782 at = strat->posInL(strat->L,strat->Ll,h,strat);
783 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
784 h->Clear();
785 return -1;
786 }
787 }
788 }
789}
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition coeffs.h:468

◆ reorderL()

void reorderL ( kStrategy  strat)

Definition at line 1222 of file kstd1.cc.

1223{
1224 int i,j,at;
1225 LObject p;
1226
1227 for (i=1; i<=strat->Ll; i++)
1228 {
1229 at = strat->posInL(strat->L,i-1,&(strat->L[i]),strat);
1230 if (at != i)
1231 {
1232 p = strat->L[i];
1233 for (j=i-1; j>=at; j--) strat->L[j+1] = strat->L[j];
1234 strat->L[at] = p;
1235 }
1236 }
1237}

◆ reorderT()

void reorderT ( kStrategy  strat)

Definition at line 1242 of file kstd1.cc.

1243{
1244 int i,j,at;
1245 TObject p;
1246 unsigned long sev;
1247
1248
1249 for (i=1; i<=strat->tl; i++)
1250 {
1251 if (strat->T[i-1].length > strat->T[i].length)
1252 {
1253 p = strat->T[i];
1254 sev = strat->sevT[i];
1255 at = i-1;
1256 loop
1257 {
1258 at--;
1259 if (at < 0) break;
1260 if (strat->T[i].length > strat->T[at].length) break;
1261 }
1262 for (j = i-1; j>at; j--)
1263 {
1264 strat->T[j+1]=strat->T[j];
1265 strat->sevT[j+1]=strat->sevT[j];
1266 strat->R[strat->T[j+1].i_r] = &(strat->T[j+1]);
1267 }
1268 strat->T[at+1]=p;
1269 strat->sevT[at+1] = sev;
1270 strat->R[p.i_r] = &(strat->T[at+1]);
1271 }
1272 }
1273}

◆ updateL()

void updateL ( kStrategy  strat)

Definition at line 1394 of file kstd1.cc.

1395{
1396 LObject p;
1397 int dL;
1398 int j=strat->Ll;
1399 loop
1400 {
1401 if (j<0) break;
1402 if (hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat))
1403 {
1404 p=strat->L[strat->Ll];
1405 strat->L[strat->Ll]=strat->L[j];
1406 strat->L[j]=p;
1407 break;
1408 }
1409 j--;
1410 }
1411 if (j<0)
1412 {
1413 j=strat->Ll;
1414 loop
1415 {
1416 if (j<0) break;
1417 if (pNext(strat->L[j].p) == strat->tail)
1418 {
1420 pLmDelete(strat->L[j].p); /*deletes the short spoly and computes*/
1421 else
1422 pLmFree(strat->L[j].p); /*deletes the short spoly and computes*/
1423 strat->L[j].p = NULL;
1424 poly m1 = NULL, m2 = NULL;
1425 // check that spoly creation is ok
1426 while (strat->tailRing != currRing &&
1427 !kCheckSpolyCreation(&(strat->L[j]), strat, m1, m2))
1428 {
1429 assume(m1 == NULL && m2 == NULL);
1430 // if not, change to a ring where exponents are at least
1431 // large enough
1432 kStratChangeTailRing(strat);
1433 }
1434 /* create the real one */
1435 ksCreateSpoly(&(strat->L[j]), strat->kNoetherTail(), FALSE,
1436 strat->tailRing, m1, m2, strat->R);
1437
1438 strat->L[j].SetLmCurrRing();
1439 if (!strat->honey)
1440 strat->initEcart(&strat->L[j]);
1441 else
1442 strat->L[j].SetLength(strat->length_pLength);
1443
1444 BOOLEAN pp = hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat);
1445
1446 if (strat->use_buckets) strat->L[j].PrepareRed(TRUE);
1447
1448 if (pp)
1449 {
1450 p=strat->L[strat->Ll];
1451 strat->L[strat->Ll]=strat->L[j];
1452 strat->L[j]=p;
1453 break;
1454 }
1455 }
1456 j--;
1457 }
1458 }
1459}

◆ updateLHC()

void updateLHC ( kStrategy  strat)

Definition at line 1465 of file kstd1.cc.

1466{
1467
1468 int i = 0;
1469 kTest_TS(strat);
1470 while (i <= strat->Ll)
1471 {
1472 if (pNext(strat->L[i].p) == strat->tail)
1473 {
1474 /*- deletes the int spoly and computes -*/
1475 if (pLmCmp(strat->L[i].p,strat->kNoether) == -1)
1476 {
1478 pLmDelete(strat->L[i].p);
1479 else
1480 pLmFree(strat->L[i].p);
1481 strat->L[i].p = NULL;
1482 }
1483 else
1484 {
1486 pLmDelete(strat->L[i].p);
1487 else
1488 pLmFree(strat->L[i].p);
1489 strat->L[i].p = NULL;
1490 poly m1 = NULL, m2 = NULL;
1491 // check that spoly creation is ok
1492 while (strat->tailRing != currRing &&
1493 !kCheckSpolyCreation(&(strat->L[i]), strat, m1, m2))
1494 {
1495 assume(m1 == NULL && m2 == NULL);
1496 // if not, change to a ring where exponents are at least
1497 // large enough
1498 kStratChangeTailRing(strat);
1499 }
1500 /* create the real one */
1501 ksCreateSpoly(&(strat->L[i]), strat->kNoetherTail(), FALSE,
1502 strat->tailRing, m1, m2, strat->R);
1503 if (! strat->L[i].IsNull())
1504 {
1505 strat->L[i].SetLmCurrRing();
1506 strat->L[i].SetpFDeg();
1507 strat->L[i].ecart
1508 = strat->L[i].pLDeg(strat->LDegLast) - strat->L[i].GetpFDeg();
1509 if (strat->use_buckets) strat->L[i].PrepareRed(TRUE);
1510 }
1511 }
1512 }
1513 deleteHC(&(strat->L[i]), strat);
1514 if (strat->L[i].IsNull())
1515 deleteInL(strat->L,&strat->Ll,i,strat);
1516 else
1517 {
1518#ifdef KDEBUG
1519 kTest_L(&(strat->L[i]), strat, TRUE, i, strat->T, strat->tl);
1520#endif
1521 i++;
1522 }
1523 }
1524 kTest_TS(strat);
1525}

◆ updateT()

void updateT ( kStrategy  strat)

Definition at line 1531 of file kstd1.cc.

1532{
1533 int i = 0;
1534 LObject p;
1535
1536 while (i <= strat->tl)
1537 {
1538 p = strat->T[i];
1539 deleteHC(&p,strat, TRUE);
1540 /*- tries to cancel a unit: -*/
1541 cancelunit(&p);
1542 if (TEST_OPT_INTSTRATEGY) /* deleteHC and/or cancelunit may have changed p*/
1543 p.pCleardenom();
1544 if (p.p != strat->T[i].p)
1545 {
1546 strat->sevT[i] = pGetShortExpVector(p.p);
1547 p.SetpFDeg();
1548 }
1549 strat->T[i] = p;
1550 i++;
1551 }
1552}

Variable Documentation

◆ kHomW

VAR intvec * kHomW

Definition at line 2412 of file kstd1.cc.

◆ kModW

VAR intvec* kModW

Definition at line 2412 of file kstd1.cc.

◆ kOptions

VAR BITSET kOptions
Initial value:
#define OPT_SUGARCRIT
Definition options.h:80
#define OPT_PROT
Definition options.h:75
#define OPT_INFREDTAIL
Definition options.h:94
#define OPT_WEIGHTM
Definition options.h:97
#define OPT_NOT_SUGAR
Definition options.h:78
#define OPT_NOTREGULARITY
Definition options.h:96
#define OPT_INTERRUPT
Definition options.h:79
#define OPT_FASTHC
Definition options.h:85
#define OPT_OLDSTD
Definition options.h:86

Definition at line 45 of file kstd1.cc.

◆ validOpts

VAR BITSET validOpts

Definition at line 60 of file kstd1.cc.